Trust Computational Model for IoT using Machine Learning

Author:

Marigowda Chikkade Krishnegowda1,J Thriveni2,Subrahmanyam Gowrishankar3,Rajuk Venugopal Kuppanna2,A Muthyamala2

Affiliation:

1. Department of Information Science and Engineering, Acharya Institute of Technology, Visvesvaraya Technological University, Belagavi, India

2. Department of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bengaluru, India

3. Department of Computer Science and Engineering, B M S College of Engineering, Bengaluru, Karnataka, India

Abstract

Aims and Background: The Internet of Things has evolved over the years to a greater extent, where objects communicate with each other over a network. Heterogenous communication between the nodes leads to a large amount of information sharing, and sensitive information could be shared over the network. It is important to maintain privacy and security during information sharing to protect devices from communicating with malicious nodes. Objectives and Methodology: The concept of trust was introduced to prevent nodes from communicating with malicious nodes. A trust computation model for the IoT based on machine learning concepts was designed, which evaluates trust based on the Trust Marks. There are three trust marks, out of which two are evaluated. The three trust marks are knowledge, experience, and reputation. Knowledge trust marks are evaluated separately based on their trust property mathematical formulations, and then based on these properties, machine learning-based algorithms are applied to train the model to classify the objects as trustworthy and untrustworthy. Results: The effectiveness of the Knowledge Trust Mark is measured by a simulation and confusion matrix. The accuracy of the trained model is shown by the accuracy score. The trust computational model for IoT using machine learning shows higher accuracy in classifying the objects as trustworthy and untrustworthy. Conclusion: The experience trust mark is evaluated based on its properties, and the behaviour of the experience is shown over time graphically.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3