Rate and Performance Enhancement of LDPC Codes Using Collection of Punctured Codes Decoding (CPCD)

Author:

Hassan Rana A.1ORCID,Fonseka John P.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Texas at Dallas, Texas, 75080, United States

Abstract

Background: Low-Density Parity-Check (LDPC) codes have received significant interest in a variety of communication systems due to their superior performance and reasonable decoding complexity. Methods: A novel Collection of Punctured Codes Decoding (CPCD) technique that considers a code as a collection of its punctured codes is proposed. Two forms of CPCD, serial CPCD that decodes each punctured code serially and parallel CPCD that decodes each punctured code in parallel, are discussed. In contrast to other modifications of LDPC decoding documented in the literature, the proposed CPCD technique views a LDPC code as a collection of punctured LDPC codes, where all punctured codes are derived from the original LDPC code by removing different portions of its parity bits. CPCD technique decodes each punctured code separately and exchanges extrinsic information obtained from that decoding among all other punctured codes for their decoding. Hence, as the iterations increase, the information obtained in the decoding of punctured codes improve making CPCD perform better than standard decoding. Results: It is demonstrated that both serial and parallel CPCD have about the same decoding complexity compared with standard Sum Product Algorithm (SPA) decoding. It is also demonstrated that while serial CPCD has about the same decoding delay compared with standard SPA decoding, parallel CPCD can decrease the decoding delay, however, at the expense of processing power. Conclusion: Numerical results demonstrate that CPCD can either significantly improve the performance, or significantly increase the code rate of LDPC codes.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implicit Transmission of Coded Information;IEEE Open Journal of the Communications Society;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3