Malicious apps Identification in Android Devices Using Machine Learning Algorithms

Author:

Ahuja Ravinder1ORCID,Maheshwari Vineet2ORCID,Manglik Siddhant2ORCID,Kazmi Abiha2ORCID,Arora Rishika2ORCID,Gupta Anuradha2ORCID

Affiliation:

1. Electronics and Computer Discipline, Indian Institute of Technology Roorkee, Roorkee, India

2. Computer Science and Engineering, Jaypee Institute of Information Technology, Noida, India

Abstract

Background & Objective: In this paper, malicious apps detection system is implemented using machine learning algorithms. For this 330 permission based features of 558 android applications are taken into consideration. Methods: The main motto of this work is to develop a model which can effectively detect the malicious and benign apps. In this we have used six feature selection techniques which will extract important features from 330 permission based features of 558 apps and further fourteen classification algorithms are applied using Python language. Results: In this paper, an efficient model for detecting malicious apps has been proposed. Conclusion: Proposed model is able to detect malicious apps approx. 3% better than existing system.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Computer Science Applications

Reference43 articles.

1. Aswini A.M.; Vinod P.; Security, Privacy, and Applied Cryptography Engineering SPACE Lecture Notes in Computer Science,2014

2. Wang W.; Li Y.; Wang X.; Liu J.; Zhang X.; Detecting android malicious apps and categorizing benign apps with an ensemble of classifiers. Future Gener Comput Syst 2018,78,987-994

3. Pandita R.; Xiao X.; Yang W.; Enck W.; Xie T.; WHYPER: Towards automating risk assessment of mobile applications the 22nd USENIX Security Symposium (USENIX Security 13),2013

4. Barrera D.; Kayacik H.G.; van Oorschot P.C.; Somayaji A.; A methodology for empirical analysis of permission-based security models and its application to android. . Proceedings of the17th ACM conference on Computer and communications security,2010

5. Mahindru A.; Singh P.; Dynamic permissions based android malware detection using machine learning techniques. Proceedings of the 10th Innovations in Software Engineering Conference 2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3