Positive Predictive Value Surfaces as a Complementary Tool to Assess the Performance of Virtual Screening Methods

Author:

Morales Juan F.1,Chuguransky Sara1,Alberca Lucas N.1,Alice Juan I.1,Goicoechea Sofía1,Ruiz María E.1,Bellera Carolina L.1,Talevi Alan1ORCID

Affiliation:

1. Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina

Abstract

Background: Since their introduction in the virtual screening field, Receiver Operating Characteristic (ROC) curve-derived metrics have been widely used for benchmarking of computational methods and algorithms intended for virtual screening applications. Whereas in classification problems, the ratio between sensitivity and specificity for a given score value is very informative, a practical concern in virtual screening campaigns is to predict the actual probability that a predicted hit will prove truly active when submitted to experimental testing (in other words, the Positive Predictive Value - PPV). Estimation of such probability is however, obstructed due to its dependency on the yield of actives of the screened library, which cannot be known a priori. Objective: To explore the use of PPV surfaces derived from simulated ranking experiments (retrospective virtual screening) as a complementary tool to ROC curves, for both benchmarking and optimization of score cutoff values. Methods: The utility of the proposed approach is assessed in retrospective virtual screening experiments with four datasets used to infer QSAR classifiers: inhibitors of Trypanosoma cruzi trypanothione synthetase; inhibitors of Trypanosoma brucei N-myristoyltransferase; inhibitors of GABA transaminase and anticonvulsant activity in the 6 Hz seizure model. Results: Besides illustrating the utility of PPV surfaces to compare the performance of machine learning models for virtual screening applications and to select an adequate score threshold, our results also suggest that ensemble learning provides models with better predictivity and more robust behavior. Conclusion: PPV surfaces are valuable tools to assess virtual screening tools and choose score thresholds to be applied in prospective in silico screens. Ensemble learning approaches seem to consistently lead to improved predictivity and robustness.

Funder

Agencia Nacional de Promoción Científica y Tencológica

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3