A Review of Computational Approaches Targeting SARS-CoV-2 Main Protease to the Discovery of New Potential Antiviral Compounds

Author:

Castillo-Garit Juan A.12ORCID,Cañizares-Carmenate Yudith3,Pham-The Hai4,Pérez-Doñate Virginia5,Torrens Francisco6,Pérez-Giménez Facundo2

Affiliation:

1. Department Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara, Santa Clara, 50200, Villa Clara, Cuba

2. Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Spain

3. Unit of Computer-Aided Molecular “Biosilico” Discovery and Bioinformatic Research (CAMD-BIR Unit), Facultad de Química-Farmacia, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, 54830, Villa Clara, Cuba

4. Department of Medicinal Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi, Viet-nam

5. Departamento de Microbiología. Hospital Universitario de la Ribera, Valencia, Spain

6. Institut Universitari de Ciència Molecular, Universitat de València, Edifici d’Instituts de Paterna, P.O. Box 22085, E-46071, València, Spain

Abstract

Abstract: The new pandemic caused by the coronavirus (SARS-CoV-2) has become the biggest challenge that the world is facing today. It has been creating a devastating global crisis, causing countless deaths and great panic. The search for an effective treatment remains a global challenge owing to controversies related to available vaccines. A great research effort (clinical, experimental, and computational) has emerged in response to this pandemic, and more than 125000 research re-ports have been published in relation to COVID-19. The majority of them focused on the discovery of novel drug candidates or repurposing of existing drugs through computational approaches that significantly speed up drug discovery. Among the different used targets, the SARS-CoV-2 main protease (Mpro), which plays an essential role in coronavirus replication, has become the preferred target for computational studies. In this review, we examine a representative set of computational studies that use the Mpro as a target for the discovery of small-molecule inhibitors of COVID-19. They will be divided into two main groups, structure-based and ligand-based methods, and each one will be subdivided according to the strategies used in the research. From our point of view, the use of combined strategies could enhance the possibilities of success in the future, permitting to devel-opment of more rigorous computational studies in future efforts to combat current and future pan-demics.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3