Sorafenib Loaded Resealed Erythrocytes for the Treatment of Hepatocellular Carcinoma

Author:

Desai Raj M.1,Desai Neha2,Momin Munira2,Bhatt Lokesh Kumar3ORCID

Affiliation:

1. Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, Maharashtra, India

2. Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, Maharashtra, India

3. Department of Pharmacology, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, Maharashtra, India

Abstract

Background: This study aims to formulate and characterize sorafenib-loaded resealed erythrocytes (SoRE) and investigate their anticancer activity in a rat model of hepatocellular carcinoma. Methods: SoRE were prepared by hypotonic dialysis of red blood cells obtained from Wistar rats using a range of drug-containing dialysis mediums (2-10 mg/ml) and osmosis time (30-240 mins). Optimized SoRE (8 mg/mL and 240 mins) were characterized for size, morphology, stability, entrapment efficiency, in vitro release profiles, and in vivo efficacy evaluations. For efficacy studies, optimized SoRE were intravenously administered to Wistar rats having hepatocellular lesions induced by aflatoxin B and monitored for in vivo antineoplastic activity. Results: The amount of sorafenib entrapped was directly proportional to the drug concentration in the dialysis medium and duration of osmosis; highest for 10 mg/mL and 240 minutes and lowest for 2 mg/mL and 30 minutes, respectively. Optimized SoRE were biconcave with a size of 112.7 nm and zeta potential of -11.95 ± 2.25 mV. Osmotic and turbulence fragility were comparable with native erythrocytes. Conclusion: Drug release follows the first-order pattern. In vivo investigations reveal better anticancer activity of SoRE formulation compared to sorafenib standard preparation. Resealed erythrocytes loaded with sorafenib displayed first-order in vitro release and promising anticancer activity in a rat model of hepatocellular carcinoma.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3