Effect of Toll-like Receptor-3 Antagonist on Viral Asthma Exacerbations Via a TLR3/dsRNA Complex Pathway

Author:

Arora Swamita1ORCID,Agrawal Mohit2ORCID,Sahu Kantrol Kumar3ORCID,Alam Sanjar1ORCID,Akram Wasim4ORCID,Khalid Mohammad5,Kumar Shivendra6ORCID,Saha Sunam6ORCID,Singh Kuldeep6ORCID,Chaudhary Hema2ORCID

Affiliation:

1. Department of Pharmacology, R.V Northland Institute of Pharmacy, U.P., 201301, India

2. School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram, India

3. Institute of Pharmaceutical Research, GLA University, Mathura, India

4. Department of Pharmacology, SPER, Jamia Hamdard University, New Delhi, 110062, India

5. Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia

6. Department of Pharmacy, Rajiv Academy for Pharmacy, Mathura, India

Abstract

Background: The Toll-like receptor-3 (TLR3) ligand Poly(I:C) has been shown to induce a viral aggravation of severe asthma by identifying double-stranded RNA (dsRNA). This study aimed to evaluate the therapeutic role of the TLR3/dsRNA complex inhibitor-calbiochem compound in the treatment of Poly(I:C)-induced viral asthma exacerbations through the ovalbu-min-induced asthma model in Swiss albino mice. Methods: Poly(I:C) and Ovalbumin drugs were injected in mice to sensitize (i.p. on 0, 7, and 14th day) and challenge (i.n. on the 21st and 22nd days). In contrast, the treatment drug TLR3/dsRNA complex inhibitor-calbiochem was given on the 21st and 22nd days intraperitoneally within the study period. In-vivo measurements were carried out in BALF and serum for pro-inflammatory cytokines, inflammatory leukocyte counts, lactate dehydrogenase (LDH) and nitrite levels, lungs/body weight index, and lung tissue histopathology using H and E staining in mice airways. Results: High levels of cytokines (NF-κB, IL-1β, IL-5, RANTES, MIP-2, and MCP-1) are seen in groups exposed to OVA and Poly (I:C). Further, inflammatory leukocyte cell counts, lung-body weight (LW/BW) index, airway hyperresponsiveness (AHR), and lung tissue damage sug-gest exacerbations in mice airways. On the other hand, TLR3/dsRNA complex inhibitor-calbio-chem and dexamethasone significantly reversed these changes toward normal levels. Conclusions: These results suggest that the novel compound TLR3/dsRNA complex inhibitor-calbiochem has a better therapeutic role than dexamethasone for managing inflammatory char-acteristics in asthmatic mice lungs and is a potent target for viral asthma exacerbations

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3