Exploring the Role of Cathelicidin Antimicrobial Peptide, Toll-Like Receptor 4, and HMGB-1 in Bacterial Infection

Author:

Febriza Ami12ORCID,Idrus Hasta Handayani3,Kasim Vivien Novarina4ORCID

Affiliation:

1. Department of Physiology, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar, Indonesia

2. Postdoctoral at Centre for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Centre, Bogor, West Java, Indonesia

3. Centre for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Centre, Bogor, West Java, Indonesia

4. Department of Nutrition, Faculty of Medicine, State University of Gorontalo, Gorontalo, Indonesia

Abstract

Background and Aim: Lipopolysaccharides (LPS) from Salmonella typhi will attach with Toll-Like Receptor 4 (TLR-4) and trigger an inflammatory response to fight the pathogen. Due to infection, the HMGB1 is produced by immune cells or secreted passively from dead cells. Fur-thermore, the antimicrobial peptide, cathelicidin was secreted to neutralize and eliminate these path-ogens. This study aims to examine the interaction of Cathelicidin antimicrobial peptide (CAMP), TLR-4, and HMGB-1 on inhibiting bacterial growth in Salmonella infection. Methods: This study is an experiment that uses a pre-post-test design. Mice balb/c were separated into three groups; group A received levofloxacin for five days, group B received a placebo, and group C was the control. Both groups, A and B, received an injection of S. Typhi strain thy1. Blood samples were taken from three groups on the 4th, 10th, and 30th day to calculate CAMP, TLR-4, and HMGB-1 mRNA gene expression levels. To determine bacterial colony, peritoneal fluid was taken three times on the 4th, 10th, and 30th day to calculate bacterial colony. Results: Our finding observed that the expression of mRNA CAMP was inversely related to bacte-rial colony count, which means that higher CAMP mRNA expression was associated with reduced bacterial colony count in groups A and B. The expression of HMGB-1 mRNA was found to be positively correlated with bacterial growth in group A. Meanwhile, TLR-4 mRNA expression did not significantly correlate with bacterial colony count in any groups. method: This study is an experiment that uses a pre-post-test design. Mice balb/c were separated into three groups; group A received levofloxacin for five days, group B received a placebo, and group C was the control. Both groups, A and B, received an injection of S. Typhi strain thy1. Blood samples were taken from three groups on the 4th, 10th, and 30th day to calculate CAMP, TLR-4, and HMGB-1 mRNA gene expression levels. To determine bacterial colony, peritoneal fluid was taken three times on the 4th, 10th, and 30th day to calculate bacterial colony. Conclusions: CAMP, TLR-4, and HMGB-1 affect bacterial infections. Higher expression CAMP mRNA levels lower colony counts. Meanwhile, decreasing TLR-4 and HMGB-1 mRNA expression were found during the study, due to reducing growth bacteria. result: The expression of mRNA CAMP and bacterial colony count correlated negatively. The expression of HMGB-1 mRNA correlated with bacterial growth. Higher CAMP mRNA expression was found to relate to reduced bacterial colony count in groups A and B using linear regression.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3