ZIP14 Affects the Proliferation, Apoptosis, and Migration of Cervical Cancer Cells by Regulating the P38 MAPK Pathway

Author:

Jiang Lixia1,Xie Ting2,Xia Yu3,Li Feng4,Zhong Tianyu5,Lai Mi5

Affiliation:

1. Department of Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi341000, China

2. Gannan Medical University, Ganzhou, Jiangxi ,341000, China

3. Department of Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China

4. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China

5. Department of Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi ,341000, China

Abstract

Background: Cervical cancer (CC) remains a major public health concern and is a leading cause of female mortality worldwide. Understanding the molecular basis of its pathogenesis is essential for the development of novel therapeutic strategies. In this study, we aimed to dissect the role of a specific molecule, ZIP14, in the initiation and progression of CC. Method: We used Gene Expression Omnibus for target gene identification, while KEGG was used to delineate CC-related pathways. Proliferation, migration, and apoptosis levels in CC cells were assessed using CCK8, Transwell, and flow cytometry, respectively. The effect of the target genes on the in vivo tumorigenesis of CC cells was evaluated using the subcutaneous tumorigenesis assay. Results: ZIP14 (SLC39A14) was found to be underexpressed in CC samples. Our KEGG pathway analysis revealed the potential involvement of the P38 mitogen-activated protein kinase (MAPK) pathway in CC pathogenesis. Overexpression of ZIP14 in HeLa and Caski cells increased p38 phosphorylation, inhibited cell growth and migration, and enhanced apoptosis. Conversely, ZIP14 knockdown produced the opposite effects. Importantly, the bioeffects induced by ZIP14 overexpression could be counteracted by the p38 MAPK pathway inhibitor SB203580. In vivo experiments further confirmed the influence of ZIP14 on CC cell migration Conclusion: Our study is the first to elucidate the pivotal role of ZIP14 in the pathogenesis of CC, revealing its inhibitory effects through the activation of the p38 MAPK signaling pathway. The discovery not only provides a deeper understanding of CC's molecular underpinnings, but also highlights ZIP14 as a promising therapeutic target. As ZIP14 holds significant potential for therapeutic interventions, our findings lay a robust foundation for further studies and pave the way for the exploration of novel treatment modalities for cervical cancer.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Drug Discovery,Pharmacology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3