Neuronatin Promotes the Progression of Non-small Cell Lung Cancer by Activating the NF-κB Signaling

Author:

Xiong Huanwen1,Chen Guohua1,Fang Ke2,Gu Weiguo2,Qiu Feng2

Affiliation:

1. Department of Respiratory, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China

2. Department of Oncology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China

Abstract

Background and Objective: Understanding the regulatory mechanisms involving neuronatin (NNAT) in non-small cell lung cancer (NSCLC) is an ongoing challenge. This study aimed to elucidate the impact of NNAT knockdown on NSCLC by employing both in vitro and in vivo approaches. Methods: To investigate the role of NNAT, its expression was silenced in NSCLC cell lines A549 and H226. Subsequently, various parameters, including cell proliferation, invasion, migration, and apoptosis, were assessed. Additionally, cell-derived xenograft models were established to evaluate the effect of NNAT knockdown on tumor growth. The expression of key molecules, including cyclin D1, B-cell leukemia/lymphoma 2 (Bcl-2), p65, matrix metalloproteinase (MMP) 2, and nerve growth factor (NGF) were examined both in vitro and in vivo. Nerve fiber density within tumor tissues was analyzed using silver staining. Results: Upon NNAT knockdown, a remarkable reduction in NSCLC cell proliferation, invasion, and migration was observed, accompanied by elevated levels of apoptosis. Furthermore, the expression of cyclin D1, Bcl-2, MMP2, and phosphorylated p65 (p-p65) showed significant downregulation. In vivo, NNAT knockdown led to substantial inhibition of tumor growth and a concurrent decrease in cyclinD1, Bcl-2, MMP2, and p-p65 expression within tumor tissues. Importantly, NNAT knockdown also led to a decrease in nerve fiber density and downregulation of NGF expression within the xenograft tumor tissues. Conclusion: Collectively, these findings suggest that neuronatin plays a pivotal role in driving NSCLC progression, potentially through the activation of the nuclear factor-kappa B signaling cascade. Additionally, neuronatin may contribute to the modulation of tumor microenvironment innervation in NSCLC. Targeting neuronatin inhibition emerges as a promising strategy for potential anti-NSCLC therapeutic intervention.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3