A Bioinformatic Strategy for Investigating the Mechanism of Hispolon in the Treatment of Triple-Negative Breast Cancer Combined with In vitro Experiments

Author:

Li Junfeng1,Bao Jingfei2,Wu Lichao3,Sun Tengfei3,Zhao Junhui3,Luo Fei3,Tao Fangfang3,Liu Wenhong3

Affiliation:

1. Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China

2. Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China

3. Zhejiang Chinese Medical University, China

Abstract

Background: Hispolon, a phenolic compound isolated from the medicinal yellow fungal mulberry, exhibits a strong anti-triple-negative breast cancer (TNBC) effect. However, the antitumor mechanisms of Hispolon have not been fully explored. Objective: In this study, we systematically investigated the mechanism of Hispolon against TNBC based on bioinformatics and in vitro experiments. Methods: The Hispolon-related targets were first collected from the SwissTarget database. Differential Expression Genes (DEG) were screened between TNBC and normal breast tissue using the Gene Expression Comprehensive (GEO) dataset. The overlapping targets between Hispolon and DEG were analyzed by plotting Venn maps. Protein-protein interaction (PPI) network was constructed to analyze the interactions among these targets. The focus was on mining the core targets of anti-TNBC effects of Hispolon via the Cytohubba and MCODE plugin of Cytoscape 3.7.2 software. We performed survival analysis on these core targets to screen the best-matched targets, including EGFR, KIT, and PLAU. This correlated strongly with our validation of Hispolon by molecular docking. In addition, Gene Ontology (GO) anal-ysis and KEGG pathway analysis were performed using R software (ClusterProfiler package). Finally, in vitro experiments were performed to assess the accuracy of predicted target genes. Results: The ADME results suggested that Hispolon has great potential to develop into a drug. Twenty overlapping targets were screened by matching the 107 targets of Hispolon to the 2,013 targets of TNBC DEG. Seven core targets of Hispolon against TNBC were initially identified, including EGFR, IGFBP3, MMP9, MMP2, MMP1, PLAU, and KIT. GO enrich-ment analysis demonstrated that the biological process of Hispolon acting on TNBC mainly involves lymphocyte activation in immune response and phosphatidylinositol-mediated signal-ing. Additionally, the relaxin signaling pathway, estrogen signaling pathway, proteoglycans in cancer, and others might be the key pathways of Hispolon against TNBC. Furthermore, Hispo-lon inhibited the proliferation of MDA-MB-231 cells in a concentration-dependent manner and regulated the RNA and protein expression of the core targets EGFR, PLAU, and KIT for the treatment of TNBC. Conclusion: In this study, the polygenic pharmacological mechanism of action of Hispolon against TNBC was explored through network pharmacology and in vitro experiments, provid-ing a new insight into the mechanism of TCM monomer against TNBC.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3