Selective Photodynamic Effects on Breast Cancer Cells Provided by p123 Pluronic®- Based Nanoparticles Modulating Hypericin Delivery

Author:

Damke Gabrielle Marconi Zago Ferreira1,Souza Raquel Pantarotto1,Montanha Maiara Camotti2,Damke Edilson1,Gonçalves Renato Sonchini3,César Gabriel Batista3,Kimura Elza2,Caetano Wilker3,Hioka Noboru3,Consolaro Marcia Edilaine Lopes4

Affiliation:

1. Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringa, Parana, Brazil

2. Department of Pharmacy, Universidade Estadual de Maringa, Parana, Brazil

3. Department of Chemistry, Universidade Estadual de Maringa, Parana, Brazil

4. Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Paraná, Brazil

Abstract

Background: Breast cancer is the most relevant type of cancer and the second cause of cancer- related deaths among women in general. Currently, there is no effective treatment for breast cancer although advances in its initial diagnosis and treatment are available. Therefore, the value of novel anti-tumor therapeutic modalities remains an immediate unmet need in clinical practice. Following our previous work regarding the properties of the Pluronics with different photosensitizers (PS) for photodynamic therapy (PDT), in this study we aimed to evaluate the efficacy of supersaturated hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) against breast cancer cells (MCF-7) and non-tumorigenic breast cells (MCF-10A). Methods: Cell internalization and subcellular distribution of HYP/P123 was confirmed by fluorescence microscopy. The phototoxicity and citototoxicity of HYP/P123 was assessed by trypan blue exclusion assay in the presence and absence of light. Long-term cytotoxicity was performed by clonogenic assay. Cell migration was determined by the wound-healing assay. Apoptosis and necrosis assays were performed by annexin VFITC/ propidium Iodide (PI) by fluorescence microscopy. Results: Our results showed that HYP/P123 micelles had high stability and high rates of binding to cells, which resulted in the selective internalization in MCF-7, indicating their potential to permeate the membrane of these cells. Moreover, HYP/P123 micelles accumulated in mitochondria and endoplasmic reticulum organelles, resulting in the photodynamic cell death by necrosis. Additionally, HYP/P123 micelles showed effective and selective time- and dose dependent phototoxic effects on MCF-7 cells but little damage to MCF-10A cells. HYP/P123 micelles inhibited the generation of cellular colonies, indicating a possible capability to prevent the recurrence of breast cancer. We also demonstrated that HYP/P123 micelles inhibit the migration of tumor cells, possibly by decreasing their ability to form metastases. Conclusion: Taken together, the results presented here indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat human breast cancers through photodynamic therapy, suggesting they are worthy for in vivo preclinical evaluations.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3