Synthesis of Novel Thieno[2,3-d]pyrimidine Derivatives and Evaluation of Their Cytotoxicity and EGFR Inhibitory Activity

Author:

Adly Mina E.1,Gedawy Ehab M.1,El-Malah Afaf A.1,El-Telbany Farag A.1

Affiliation:

1. Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt

Abstract

Background: 4-Substitutedaminoquinazoline scaffolds were reported to possess potent cytotoxic and EGFR inhibitory activity such as gefitinib (Iressa), erlotinib (Tarceva) and tandutinib. Objective: Synthesis of novel 4-substitutedaminothieno[2,3-d]pyrimidine derivatives as bioisosters of 4-substitutedaminoquinazoline derivatives with potential cytotoxic and EGFR inhibitory activity. Methods: Novel 4-substitutedaminothieno[2,3-d]pyrimidine derivatives 4a-i and 5a-c were synthesized via reacting corresponding 4-chlorothieno[2,3-d]pyrimidine derivatives 3a-c with N-methylpiperazine, morpholine, N-phenylpiperazine or 1,3-propanediamine. Six compounds (2a, 4d, 4e, 5a-c) were selected by the National Cancer Institute (USA) for evaluating their cytotoxic activity using 60 different human tumor cell lines using a single dose (10-5 Molar). The rest of the synthesized compounds (2b, 2c, 3a-c, 4a-c and 4f-i) were subjected to screening against T47D breast cancer cell line using a single dose (10-5 Molar) at Pharmacology lab., Cancer biology lab., Egyptian National Institute. Moreover, compounds 2a and 4b-e were subjected to further evaluation by IC50 determination. Finally, the inhibition of epidermal growth factor receptor (EGFR) was then investigated for the most active compounds 2a and 4d. Results: Compounds 2a and 4b-e showed significant cytotoxic activity. Compound 2a was more potent than doxorubicin against lung cancer cell line A549 with IC50 = 13.40 μM and comparable activity against MCF7. Compound 4d exhibited more potent activity than Doxorubicin against prostate PC3 (IC50 = 14.13 µM) while showed comparable activity against MCF7 and T47D. Conclusion: 4-Substitutedaminothieno[2,3-d]pyrimidine is a promising backbone for the design and synthesis of potent cytotoxic leads.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3