Combined Application of Salinomycin and ATRA Induces Apoptosis and Differentiation of Acute Myeloid Leukemia Cells by Inhibiting WNT/β-Catenin Pathway

Author:

Xi Hui-Min1,Lu Hao1,Weng Xiang-Qin1,Sheng Yan1,Wu Jing1,Li Lu1,Cai Xun1ORCID

Affiliation:

1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China

Abstract

Background and objective: All-trans retinoic acid (ATRA) is only effective in acute promyelocytic leukemia (APL), but not in other subtype of acute myeloid leukemia (AML). Salinomycin targets tumor cells rather than non-tumorigenic cells, and WNT/β-catenin pathway inhibition is one of the mechanisms of its anti-tumor activity. There is a crosstalk between RA and WNT/β-catenin pathway. Here, we investigate the effect of the combination of salinomycin and ATRA (S+RA) in non-APL AML cells. Methods: Apoptosis was evaluated by cell viability and Annexin-V assay. Cell differentiation was analyzed by CD11c expression and morphology. To explore the underlying mechanisms, Western blot analysis and mitochondrial transmembrane potentials (m) were used. Results & Discussion: S+RA induced differentiation and apoptosis in AML cell lines and AML primary cells. S+RA inhibited the β-catenin signal pathway as determined by the decreased protein levels of β-catenin, the low-density lipoprotein receptor-related proteins 6 (LRP6), and its downstream proteins such as survivin, c-Myc, caspase-3/7, cdc25A and cyclinD1 and reduced phosphorylation level of GSK3β S9. S+RA also increased the protein levels of CCAAT/enhancer-binding proteins (C/EBPs) and PU.1 and collapsed m. The above molecular and cellular changes induced by S+RA were inhibited by β-catenin specific activator and promoted by β-catenin specific inhibitor. Conclusion: S+RA induced differentiation by β-catenin-inhibition-mediated up-regulation of C/EBPs and PU.1 and suppression of c-Myc. S+RA triggered apoptosis through β-catenin-inhibition-regulated m collapse and caspase-3/7 activation. Taken together, our findings may provide novel therapeutic strategies for AML patients by targeting the WNT/β-catenin pathway.

Funder

Natural Science Foundation of Shanghai

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differentiating Acute Myeloid Leukemia Stem Cells/Blasts;Reference Module in Biomedical Sciences;2024

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3