Novel 5-bromoindole-2-carboxylic Acid Derivatives as EGFR Inhibitors: Synthesis, Docking Study, and Structure Activity Relationship

Author:

Hassan Omeed M.1,Kubba Ammar2ORCID,Tahtamouni Lubna H.34ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, University of Kirkuk, Kirkuk, Iraq

2. Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bagdad, Iraq

3. Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan

4. Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA

Abstract

Background: The indole backbone is encountered in a class of N-heterocyclic compounds with physiological and pharmacological effects such as anti-cancer, anti-diabetic, and anti-HIV. These compounds are becoming increasingly popular in organic, medicinal, and pharmaceutical research. Nitrogen compounds' hydrogen bonding, dipole- dipole interactions, hydrophobic effects, Van der Waals forces, and stacking interactions have increased their relevance in pharmaceutical chemistry due to their improved solubility. Indole derivatives, such as carbothioamide, oxadiazole, and triazole, have been reported to act as anti-cancer drugs due to their ability to disrupt the mitotic spindle and prevent human cancer cell proliferation, expansion, and invasion. Objectives: To synthesize new 5-bromoindole-2-carboxylic acid derivatives that function as EGFR tyrosine kinase inhibitors as deduced through molecular docking studies. Methods: Different derivatives of indole (carbothioamide, oxadiazole, tetrahydro pyridazine-3,6-dione, and triazole) were synthesized and evaluated through different chemical, spectroscopic methods (IR, 1HNMR, 13CNMR, and MS) and assessed in silico and in vitro for their antiproliferative activities against A549, HepG2, and MCF-7 cancer cell lines. Results: According to molecular docking analyses, compounds 3a, 3b, 3f, and 7 exhibited the strongest EGFR tyrosine kinase domain binding energies. In comparison to erlotinib, which displayed some hepatotoxicity, all of the evaluated ligands displayed good in silico absorption levels, did not appear to be cytochrome P450 inhibitors, and were not hepatotoxic. The new indole derivatives were found to decrease cell growth of three different types of human cancer cell lines (HepG2, A549, and MCF-7), with compound 3a being the most powerful while still being cancer-specific. Cell cycle arrest and the activation of apoptosis were the results of compound 3a's inhibition of EGFR tyrosine kinase activity. Conclusion: The novel indole derivatives, compound 3a in particular, are promising anti-cancer agents which inhibit cell proliferation by inhibiting EGFR tyrosine kinase activity.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3