Schisandrin B Inhibits Cell Viability and Malignant Progression of Melanoma Cells via Wnt/β-catenin Signaling Pathway

Author:

Chen Jiayi1,Zhang Lingzhao2,Pu Yihuan1,Chen Yangmei1,Li Yuxin1,Pan Xingyu1,Chen Jin1

Affiliation:

1. Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China

2. Department of Dermatology, The Affiliated Children's Hospital of Chongqing Medical University, Chongqing, 400010, China

Abstract

Background: Melanoma is of great interest due to its aggressive behavior and less favorable prognosis. The need for the development of novel drugs for the treatment of melanoma is urgent. Considerable evidence indicated that Schisandrin B (Sch B), a bioactive compound extracted from Schisandra chinensis, has numerous anti-tumor properties in multiple malignant tumors. A few studies have reported the effect of Sch B on melanogenesis in the melanoma B16F10 cell line; however, the specific anti-tumor effects and mechanisms need to be further explored. Objective: This study aimed to investigate the effects of Sch B on the cell viability, migration, invasion, and cell cycleblocking of melanoma cells and explore its potential anti-tumor mechanism in vitro and in vivo. Methods: Melanoma cells (A375 and B16) were treated with different concentrations of Sch B (0, 20, 40, 60, or 80 μM), with dimethyl sulfoxide (DMSO) as control. The inhibitory effect of Sch B on A375 and B16 melanoma cells was verified by crystal violet assay and CCK8 assay. The flow cytometry was performed to observe cell cycle blocking. The effect of Sch B on the migration and invasion of melanoma cells was detected by wound healing assay and transwell assay, respectively. Western blot analysis was used to determine protein expression levels. The growth of the A375 melanoma xenograft-treated groups and immunohistochemical staining were conducted to assess the anti-tumor effect of Sch B in vivo. Results: The crystal violet assay and CCK8 assay showed that Sch B significantly inhibited melanoma cell viability in a dose-dependent manner. Meanwhile, the flow cytometry analysis revealed that Sch B induced melanoma cell cycleblocking at the G1/S phase. In addition, the wound healing assay and transwell assay showed that Sch B inhibited the migration and invasion of melanoma cells. Furthermore, by establishing an animal model, we found that Sch B significantly inhibited the growth of melanoma in vivo. The potential mechanism could be that Sch B inhibited the activity of the Wnt/β-catenin signaling pathway. Conclusion: These findings indicated that Sch B inhibits the cell viability and malignant progression of melanoma cells via the Wnt/β-catenin pathway and induces cell cycle arrest. Our study suggests that Sch B has potential as a bioactive compound for the development of new drugs for melanoma.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3