QSAR Research of Novel Tetrandrine Derivatives against Human Hepatocellular Carcinoma

Author:

Wang Meng1,Qiu Bin2,Wang Wenhui3,Li Xiang4,Huo Huixia3

Affiliation:

1. Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, China

2. Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, China

3. Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University, China

4. Weifang Medical University, China

Abstract

Background: The new tetrandrine derivative is an anti-human liver cancer cell inhibitor which can be used to design and develop anti-human-liver-cancer drugs. Objective: A quantitative structure-activity relationship (QSAR) model was established to predict the physical properties of new tetrandrine derivatives using their chemical structures. Methods: The best descriptors were selected through CODESSA software to build a multiple linear regression model. Then, gene expression programming (GEP) was used to establish a nonlinear quantitative QSAR model with descriptors to predict the activity of a series of novel tetrandrine chemotherapy drugs. The best active compound 31 was subjected to molecular docking experiments through SYBYL software with a small fragment of the protein receptor (PDB ID:2J6M). Results: Four descriptors were selected to build a multiple linear regression model with correlation coefficients R2, R2CV and S2 with the values of 0.8352, 0.7806 and 0.0119, respectively. The training and test sets with a correlation coefficient of 0.85 and 0.83 were obtained via an automatic problem-solving program (APS) using the four selected operators as parameters, with a mean error of 1.49 and 1.08. Compound 31 had a good docking ability with an overall score of 5.8892, a collision rate of -2.8004 and an extreme value of 0.9836. Conclusion: The computer-constructed drug molecular model reveals the factors affecting the activity of human hepatocellular carcinoma cells, which provides directions and guidance for the development of highly effective anti-humanhepatocellular- carcinoma drugs in the future.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preface;Anti-Cancer Agents in Medicinal Chemistry;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3