Eugenol Inhibits the Biological Activities of an Oral Squamous Cell Carcinoma Cell Line SCC9 via Targeting MIF

Author:

Li Jialin1,Duan Yao2,Huang Xiaojin3,Qiao Bo4,Ma Rui2

Affiliation:

1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Traditional Chinese Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China

2. Department of Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China

3. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Traditional Chinese Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China

4. Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100101, China

Abstract

Background.: Oral squamous cell carcinoma (OSCC) is a rampant cancer type in head and neck cancers with a poor prognosis and a high recurrence rate. Eugenol shows an anticancer effect in a variety of cancers, but it has been rarely studied in oral squamous cell carcinoma (OSCC). Objective: The purpose of this study was to explore the role of Eugenol in OSCC and the underlying mechanism. Methods: After different concentrations of Eugenol (0, 200, 400, and 800 μM) treatment, the viability, proliferation, migration, and invasion of OSCC cell line SCC9 were measured by CCK-8, colony formation, wound-healing, and transwell assays, respectively. TUNEL staining was employed to detect apoptosis. Western blotting was used to evaluate gene expression at the protein level. Molecular docking was used to identify the target of Eugenol. Results: Eugenol decreased the proliferation and reduced the abilities of invasion and migration along with the expression of matrix metalloproteinases (MMP) 2 and MMP9 in SCC9 cells. On the contrary, the ratio of apoptotic cells was increased by Eugenol. In addition, Eugenol down-regulated B cell lymphoma-2 (Bcl-2) expression, but up-regulated BCL-2 associated X (Bax), cleaved caspase 3, and cleaved poly-ADP ribose polymerase (PARP) expression. Meanwhile, Eugenol exerted its effect on SCC9 cells in a concentration-dependent manner. Eugenol could bind to macrophage migration inhibitory factor (MIF), the expression of which was down-regulated after Eugenol treatment. Besides, overexpression of MIF reversed all the effects of Eugenol on OSCC cells. Conclusion: In summary, Eugenol suppressed the malignant processes of OSCC cells by targeting MIF, which could guide the clinical application of Eugenol in OSCC.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3