Aesculetin Inhibits Proliferation and Induces Mitochondrial Apoptosis in Bladder Cancer Cells by Suppressing the MEK/ERK Signaling Pathway

Author:

Yin Wen1,Han Li2,Li Peiwu2,Fu Xu2,Huang Zhenzhen2

Affiliation:

1. Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China

2. Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China

Abstract

Background: Aesculetin (AE), a natural coumarin derivative found in traditional medicinal herbs, has a variety of pharmacological effects. However, the role of AE and its molecular mechanisms of action on bladder cancer remain undefined. Objective: To explore the anti-tumor effects of AE on bladder cancer cells and the associated molecular mechanisms. Methods: We performed a Cell Counting Kit-8 assay to examine the inhibitory effects of AE on 5637 and T24 cells. The anti-tumor effects of AE on 5637 cells were evaluated by performing colony formation, living/dead cell staining, apoptosis, cell cycle, migration and invasion assays. The expression levels of related proteins were determined using western blotting. Results: The viability of 5637 and T24 cells was decreased by AE. AE significantly inhibited colony formation, arrested the cell cycle at the G0/G1 phase, decreased migration and invasion, decreased the mitochondrial membrane potential and increased apoptosis in 5637 cells. Western blotting results showed the release of cytochrome C from mitochondria; the activation of caspase-9 and caspase-3; decreases in CDK4, CCND1, MMP2 and MMP9 levels and an increase in the BAX/BCL-2 protein ratio after treatment with AE. AE also downregulated the levels of p-ERK and p-MEK proteins. Pre-treatment with U0126 significantly enhanced the anti-tumor effects of AE. Conclusions: AE inhibited the proliferation and induced the apoptosis of bladder cancer cells through the MEK/ERK pathway. These findings provide possible therapeutic strategies for bladder cancer.

Funder

Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital

Natural Science Foundation of Gansu Province

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3