Enzalutamide Overcomes Dihydrotestosterone-Induced Chemoresistance in Triple- Negative Breast Cancer Cells via Apoptosis

Author:

Ahram Mamoun1ORCID,Alsawalha Laila2ORCID,Abdullah Mohammad S.1,Dalmizrak Ozlem2

Affiliation:

1. Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan

2. Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus

Abstract

Background: Triple-negative breast cancer is challenging to treat due to its heterogeneity and lack of therapeutic targets. Hence, systemic chemotherapy is still the mainstay in TNBC treatment. Unfortunately, patients commonly develop chemoresistance. Androgen signalling through its receptor is an essential player in breast cancer, where it has been shown to confer chemoresistance to TNBC cells. Objective: The objective of the study was to elucidate the mechanistic effects of enzalutamide in the chemoresponse of TNBC cells to doxorubicin through the apoptosis pathway. Methods: MDA-MB-231 and MDA-MB-453 cells were used as model systems of TNBC. Cell viability and apoptosis were investigated upon treatment of cells with doxorubicin in the presence of dihydrotestosterone (DHT) and/or enzalutamide. Caspase 3/7 activity and TUNEL assays were performed to assess the induction of apoptosis. The expression of apoptosis-regulatory genes was assayed by qPCR for the detection of expression changes. Results: Enzalutamide decreased the viability of MDA-MB-231 and MDA-MB- 453 cells and reduced DHT-induced chemoresistance of both cell lines. It also increased the chemosensitivity towards doxorubicin in MDA-MB-231 cells. Increasing DNA degradation and caspase 3/7 activity were concomitant with these outcomes. Moreover, enzalutamide downregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in MDA-MB-231 cells, while increasing the expression of the pro-apoptotic gene bid. On the other hand, DHT upregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in both cell lines. Conclusion: DHT increased the expression of the anti-apoptosis genes mcl1 and bcl2 in the TNBC cells, presumably leading to cell survival via the prevention of doxorubicin-induced apoptosis. On the other hand, enzalutamide may sensitize the cells to doxorubicin through downregulation of the bid/bcl2/mcl1 axis that normally activates the executive caspases, caspase 3/7. The activities of the latter enzymes were apparent in DNA degradation at the late stages of apoptosis.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3