New Selenonapthaquinone-Based Copper (II) Complexes as the Next-Generation Photochemotherapeutic Agents

Author:

Devi Longjam R.1,Raza Md. Kausar2,Musib Dulal1,Roy Mithun1

Affiliation:

1. Department of Chemistry, National Institute of Technology Manipur, Imphal-795004, Manipur, India

2. Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, India

Abstract

Background and Objective: Photoactive transition metal complexes like copper complexes find great interest in promoting metal-based photochemotherapeutic agents. In the present study, we explored the photocytotoxic efficacy of new selenylnaphthoquinone-based copper (II) complexes that provide a phenomenal platform in making an effective photo-chemotherapeutic agent via PDT in the clinical field of cancer therapy. Methods: Three new copper(II) complexes (1-3) were synthesized in 40-60% yield and characterized analytically/ spectroscopically. ATCC® Normal Adult Human Primary Epidermal Keratinocytes were grown in Dermal Cell Basal Media supplemented with Keratinocyte Growth Kit components, to propagate keratinocytes in serum- free (not animal free) conditions. Anticancer activity of the complexes was studied using MTT (3- [4,5- dimethyltiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. The intracellular ROS (1O2) generation was studied by using Flow Cytometric Analysis (FACS) on HaCaT cells using cell accessible non-polar 2′,7′- Dichlorofluorescein Diacetate (DCFH-DA) dye. The Acridine Orange/Ethidium Bromide (AO/EB) dual staining assay was performed for detecting apoptosis in HaCaT cells. Several photophysical studies probing the generation of singlet oxygen was also carried out. We have performed Time-Dependent Density Functional Theory (TD-DFT) calculations using unrestricted B3LYP to understand the mechanism of type-II process. Results: All the complexes were remarkably cytotoxic in HaCaT cells with IC50, 1-4μM under visible light with comparing lower dark toxicity. The presence of low-lying and long-lived triplet excited state allowed effective intersystem crossing and subsequent generation of singlet oxygen, which was the primary cytotoxic species responsible for oxidative stress and apoptosis. The experimental findings are in good agrrement with the computational analysis (TD-DFT). Conclusion: The remarkably enhanced cytotoxicity of the new selenyl copper (II) complexes under the visible light probed the role of Se in photosensitized generation of singlet oxygen which was responsible for apoptosis in HaCaT cells. The results in the present work are of paramount importance in developing next generation copper(II)-based PDT agents.

Funder

Board of Research in Nuclear Science

Science and Engineering Research Board

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3