N-Terminal-Dependent Protein Degradation and Targeting Cancer Cells

Author:

Eldeeb Mohamed A.1

Affiliation:

1. Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada

Abstract

: Intracellular protein degradation is mediated selectively by the Ubiquitin-Proteasome System (UPS) and autophagic-lysosomal system in mammalian cells. Many cellular and physiological processes, such as cell division, cell differentiation, and cellular demise, are fine-tuned via the UPS-mediated protein degradation. Notably, impairment of UPS contributes to human disorders, including cancer and neurodegeneration. The proteasome- dependent N-degron pathways mediate the degradation of proteins through their destabilizing aminoterminal residues. Recent advances unveiled that targeting N-degron proteolytic pathways can aid in sensitizing some cancer cells to chemotherapeutic agents. Furthermore, interestingly, exploiting the N-degron feature, the simplest degradation signal in mammals, and fusing it to a ligand specific for Estrogen-Related Receptor alpha (ERRa) has demonstrated its utility in ERRa knockdown, via N-terminal dependent degradation, and also its efficiency in the inhibition of growth of breast cancer cells. These recent advances uncover the therapeutic implications of targeting and exploiting N-degron proteolytic pathways to curb growth and migration of cancer cells.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3