Synthesis and Evaluation of 198Au/PAMAM-MPEG-FA against Cancer Cells

Author:

Rezaei Reza1,Darzi Simin Janitabar2ORCID,Yazdani Mahnaz3

Affiliation:

1. Department of Biochemistry, Faculty of Science, Zanjan University, 45371-38791, Zanjan, Iran

2. Nuclear Science & Technology Research Institute, Materials and Nuclear Fuel Research School, Tehran, 14395-836, Iran

3. R&D Department, Toronto Institute of Pharmaceutical Technology, Toronto, Ontario, M1P 4X4, Canada

Abstract

Background: There is a significant dearth of clinical biochemistry researches to evaluate the facility of exploitation of folate targeted radioactive gold-labeled anti-cancer drugs against various cancer cell lines. Objective: The aim of this paper was to develop a gold-based compound with an efficient therapeutic potential against breast cancer. To this end, the synthesis of the 198Au/PAMAM-MPEG-FA composite was considered here. Methods: The radioactive gold (198Au) nanoparticles were encapsulated into Folic acid (FA)-targeted Polyamidoamine dendrimer (PAMAM) modified with Maleimide-Polyethylene glycol Succinimidyl Carboxymethyl ester (MPEG). After that, anticancer assessments of the prepared 198Au/PAMAM-MPEG-FA hybrid mater against breast cancer were investigated. : Further studies were also devised to compare the anticancer capabilities of the 198Au/PAMAM-MPEG-FA composite with the synthesized P-MPEG, 197Au/P-MPEG, 197Au/P-MPEG-FA, 197Au/P-FA and 198Au/P-MPEG-FA conjugates. The prepared drugs were characterized by means of various analytical techniques. The radionuclidic purity of the 198Au/P-MPEG-FA solution was determined using High Purity Germanium (HPGe) spectroscopy and its stability in the presence of human serum was studied. The cell uptake and toxicity of the prepared drugs were evaluated in vitro, and some comparative studies of the toxicity of the drugs were conducted towards the MCF7 (Human breast cancer cell), 4T1 (Mice breast adenocarcinoma cell) and C2C12 (Mice muscle normal cell). Results: The results showed that cell uptake of 198Au/P-MPEG-FA nanoparticles is high in the 4T1 cell line and the order of uptake is as 4T1> MCF7> C2C12. Moreover, of the tested compounds, 198Au/P-MPEG-FA had the highest toxicity towards the cancerous 4T1 and MCF7 in all concentrations after 24, 48 and 72h (P < 0.001). Furthermore, the cytotoxicity of the drugs was concentration-dependent. Conclusion: On the basis of the present research, 198Au/P-MPEG-FA has been proposed as a good candidate for the induction of cell death in breast cancer, although further experimental and clinical investigations are required.

Funder

Iran National Science Foundation

Zanjan University

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3