The Identification of a Novel Unsymmetrical Azine as an Apoptosis Inducer in Colorectal Cancer

Author:

Almutairi Fahad M.1,Ali Ayat G.2,Abdelhamid Abdou O.3,Alalawy Adel I.1,Bishr Mai K.4,Mohamed Mervat S.1ORCID

Affiliation:

1. Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk,Saudi Arabia

2. Department of Biochemistry, El Sahel Teaching Hospital, Cairo,Egypt

3. Department of Chemistry, Faculty of Science, Cairo University, Giza,Egypt

4. Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London,United Kingdom

Abstract

Background: Defects in the physiological mechanisms of apoptosis are one of the pivotal factors implicated in carcinogenesis. Thus, the development of novel compounds that target various apoptotic pathways has provided promising anticancer therapeutic opportunities. Objective: This study explores the cytotoxic effects of a novel unsymmetrical azine against specific cancer cell lines and investigates the mechanism of cytotoxicity. Methods: Molecular modeling was used to test the binding affinity of four new unsymmetrical azines to a model of an apoptosis inhibitor protein (XIAP). The compound with the highest binding affinity, C4, was further tested on different cell lines. Real-time Polymerase Chain Reaction (PCR) and Transmission Electron Microscope (TEM) were used to study apoptosis induction biochemically and morphologically. Results: In comparison to cisplatin as a control, the compound C4 exhibited notable cytotoxicity against all tested cancer cell lines, especially the human colorectal carcinoma cell line (HCT-116). Furthermore, C4-treated cells demonstrated marked overexpression of the pro-apoptotic proteins Bax and caspase-3 as well as the tumor suppressor p53. On the other hand, the expression of the anti-apoptotic protein Bcl-2 was inhibited. On TEM examination, C4-treated HCT-116 cells showed classical structural signs of apoptosis. Conclusion: This study identifies a novel azine (C4), which induces remarkable cytotoxicity against the colorectal carcinoma cell line, mediated through apoptosis induction. These novel insights suggest C4 as a promising therapeutic agent in colorectal cancer.

Funder

University of Tabuk

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3