Chronic Inflammatory-Modulating Potential of Cassia auriculata with Proinflammatory Cytokine IL-1beta and Its Anticancer Effect on Lung Cancer Cell Line

Author:

Anitha Rajagopal1,Subashini Rajakannu1ORCID,Kannayiram Gomathi2,Gayathri Dasararaju3

Affiliation:

1. Department of Biomedical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu,India

2. Department of Biotechnology, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu 600095,India

3. Department of Crystallography and Biophysics, University of Madras, Chepauk, Chennai, Tamil Nadu 600005,India

Abstract

Background: Inflammation is a key element in tumor progression, over time, persistent inflammation causes damage to DNA and leads to cancer. The relationship between chronic inflammation and tumor development is well established, blocking of which can help in cancer prevention and treatment in the future. Objective: Hence, with this background, the present study aims to evaluate the anti-inflammatory and anticancer potential of Cassia auriculata (CA) solvent fractions through in silico and in vitro means, respectively. Methods: Generally, inflammatory mediators play a key task in chronic inflammation, following its inflection was chosen for their interactions with nine structurally varied phytoconstituents of CA identified through GCMS. The ethanolic extract of CA was assessed for its apoptotic effects on A549 lung cancer cells by 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, JC-10 staining, DNA fragmentation assay and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Results: The interactions between bioactive components and target protein revealed that important molecules like 5,7-dihydroxy-2-[2-nethoxyphenyl]- 4H-1-Benzopyran-4-one, a flavonoid, and three other components can bind target interleukin 1-beta associated with lung cancer. In vitro data also confirmed that the diverse active components of CA extract might follow the intrinsic mitochondrial pathway to provoke cancer cell death. Conclusions: Hence, these findings strongly propose that Cassia auriculata (CA) solvent fractions could be exploited in the future to design ligands for obtaining novel leads for treating chronic inflammation linked with lung cancer, and also the extracts of CA can be recommended as a potential agent for lung cancer chemotherapy.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3