QSAR Modeling, Molecular Docking and Molecular Dynamics Simulations Studies of Lysine-Specific Demethylase 1 (LSD1) Inhibitors as Anticancer Agents

Author:

Abdizadeh Rahman1ORCID,Heidarian Esfandiar2ORCID,Hadizadeh Farzin3ORCID,Abdizadeh Tooba2ORCID

Affiliation:

1. Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran

2. Clinical Biochemistry Research Center, Basic Health Sciences Institute, Sharekord University of Medical Sciences, Shahrekord, Iran

3. Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Background: Background: Histone Lysine Demetylases1 (LSD1) is a promising medication to treat cancer, which plays a crucial role in epigenetic modulation of gene expression. Inhibition of LSD1with small molecules has emerged as a vital mechanism to treat cancer. Objective: In the present research, molecular modeling investigations, such as CoMFA, CoMFA-RF, CoMSIA and HQSAR, molecular docking and Molecular Dynamics (MD) simulations were carried out on some tranylcypromine derivatives as LSD1 inhibitors. Methods: The QSAR models were carried out on a series of Tranylcypromine derivatives as data set via the SYBYL-X2.1.1 program. Molecular docking and MD simulations were carried out by the MOE software and the SYBYL program, respectively. The internal and external predictability performances related to the generated models for these LSD1 inhibitors were justified by evaluating cross-validated correlation coefficient (q2), noncross- validated correlation coefficient (r2ncv) and predicted correlation coefficient (r2pred) of the training and test set molecules, respectively. Results: The CoMFA (q2, 0.670; r2ncv, 0.930; r2pred, 0.968), CoMFA-RF (q2, 0.694; r2ncr, 0.926; r2pred, 0.927), CoMSIA (q2, 0.834; r2ncv, 0.956; r2pred, 0.958) and HQSAR models (q2, 0.854; r2ncv, 0.900; r2pred, 0.728) for training as well as the test set of LSD1 inhibition resulted in significant findings. Conclusion: These QSAR models were found to be perfect and strong with better predictability. Contour maps of all models were generated and it was proven by molecular docking studies and molecular dynamics simulation that the hydrophobic, electrostatic and hydrogen bonding fields are crucial in these models for improving the binding affinity and determining the structure-activity relationship. These theoretical results are possibly beneficial to design new strong LSD1 inhibitors with enhanced activity to treat cancer.

Funder

Shahrekord University of Medical Sciences

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3