Antineoplastic Activity of an Old Natural Antidiabetic Biguanoid on the Human Thyroid Carcinoma Cell Line

Author:

Nozhat Zahra1ORCID,Zarkesh Maryam1ORCID,Baldini Enke2ORCID,Mohammadi-Yeganeh Samira3ORCID,Azizi Feridoun4,Hedayati Mehdi1ORCID

Affiliation:

1. Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Department of Surgical Sciences, University of Rome, Rome, Italy

3. Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Iran

4. Endocrine Research Center, Research Institute for Endocrine Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Background: In the last decades, metformin (Met), an herbal anti-diabetic medicine, has been proposed as an anti-cancer agent. Objective: Thyroid cancers are the most common malignancy of the endocrine system. Therefore, the current study was performed to assess the effects of Met on cell proliferation and activation of the Phosphoinositide 3-Kinase (PI3K)/Protein kinase B (AKT)/Forkhead Box O1 (FOXO1) signaling pathway in the Medullary Thyroid Carcinoma (MTC) cells. The effects of Met on the expression of REarranged during Transfection (RET) proto-oncogene were also investigated. Methods: MTC cell line (TT) was treated with 0, 2.5, 5, 10, 20, 30, 40, 50, and 60 mM concentrations of Met for 24, 48, and 72h. The viability and apoptosis of the treated cells were measured by the 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) and Annexin V- Propidium Iodide (PI) assays. The expression level of PI3K, AKT, FOXO1, and RET genes was investigated by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), and phosphorylation of their proteins was determined by the Enzyme-Linked Immunosorbent Assay (ELISA). Results: Results showed that Met significantly decreased the viability of the MTC cells. Met also reduced the expression level of PI3K, AKT, and FOXO1 genes (P<0.05), whereas it elevated the expression level of RET proto-oncogene (P<0.05). Conclusion : It seems that the Met has cytostatic effect on the TT cells. Our results showed that anti-tumoral effects of Met may be cell type-specific, and according to the induction of RET (as a proto-oncogene) and inhibition of FOXO1 (as a tumor suppressor gene), Met could not be an appropriate agent in treatment of MTC. The antineoplastic activity of Met has been confirmed against several malignancies in "in vitro" and "in vivo" studies. However, its molecular mechanisms in the treatment of different carcinomas particularly in thyroid cancers are not clearly understood and more studies are required to confirm its exact effect on the MTC.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metabolic Reprogramming in Thyroid Cancer;Endocrinology and Metabolism;2024-06-30

2. Chemoprotective and chemosensitizing effects of apigenin on cancer therapy;Cancer Cell International;2021-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3