Two New Adenosine Derivatives and their Antiproliferative Properties, an In Vitro Evaluation

Author:

Valdés Francisco1,Arévalo Bárbara2,Gutiérrez Margarita3,García-Castillo Verónica4,Salgado-García Rebeca5,Pérez-Plasencia Carlos4,Valenzuela Claudio6,Cayo Ángel6,Olate-Briones Alexandra6,Brown Nelson6

Affiliation:

1. Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), PhD Sciences Mention Investigation and Development of Bioactive Products, Institute of Chemistry of Natural Resources, University of Talca, Chile

2. Centro de Estudios en Alimentos Procesados- CEAP, Conicyt, Programa Regional R19A10001, Gore Maule, Talca, Chile; 3Institute of Chemistry of Natural Resources, University of Talca, Chile

3. Institute of Chemistry of Natural Resources, University of Talca, Chile

4. FES-Iztacala, UBIMED, National Autonomous University of Mexico, UNAM, Tlalnepantla, Mexico

5. Genomics Lab, National Cancer Institute of Mexico, Mexico

6. Medical School, University of Talca, Chile

Abstract

Background: Adenosine is a natural nucleoside present in various organs and tissues, where it acts as a modulator of diverse physiological and pathophysiological processes. These actions are mediated by at least four G protein-coupled receptors, which are widely and differentially expressed in tissues. Interestingly, high concentrations of adenosine have been reported in a variety of tumors. In this context, the final output of adenosine in tumorigenesis will likely depend on the constellation of adenosine receptors expressed by tumor and stromal cells. Notably, activation of the A3 receptor can reduce the proliferative capacity of various cancer cells. Objective: The objective of this study is to describe the anti-proliferative effects of two previously synthesized adenosine derivatives with A3 agonist action (compounds 2b and 2f) through in vitro assays. Results: The antiproliferative effects of adenosine derivatives (after determining IC50 values) were comparable or even higher than those described for IB-MECA, a commercially available A3 agonist. Among possible mechanisms involved, apoptosis was found to be induced in MCF-7 cells but not in AGS or MDA-MB-231 cells. Surprisingly, we were unable to observe cellular senescence induction upon treatment with compounds 2b and 2f in any of the cell lines studied, although we cannot rule out other forms of cell cycle exit at this point. Conclusion: Both adenosine derivatives showed antiproliferative effects on gastric and breast cancer cell lines, and were able to induce apoptosis, at least in the MCF-7 cell line. Further studies will be necessary to unveil receptor specificity and mechanisms accounting for the antiproliferative properties of these novel semi-synthetic compounds.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3