Comparison of Y-90 and Ho-166 Dosimetry Using Liver Phantom: A Monte Carlo Study

Author:

Yıldırım Ayşe Karadeniz1ORCID,Kökkülünk Handan Tanyıldızı2ORCID

Affiliation:

1. Opticianry Program, Istanbul Aydın University, 34295, Istanbul, Turkey

2. Radiotherapy Program, Altınbaş University, 34147, Istanbul, Turkey

Abstract

Background: It is estimated that more than 1 million people are diagnosed with liver malignancy each year and one of the treatments is radioembolization with Y-90 and Ho-166. Objective: The aim of this study is to calculate the absorbed doses caused by Y-90 and Ho-166 in tumor and liver parenchyma using a phantom via Monte Carlo method. Methods: A liver model phantom including a tumor imitation of sphere (r =1.5cm) was defined in GATE. The total activity of 40 mCi Y-90 and Ho-166 was prescribed into tumor imitation as source and 2x2x2 mm3 voxel-sized DoseActors were identified at 30 locations. The simulation, performed to calculate the absorbed doses left by particles during 1 second for Y-90 and Ho-166, was run for a total of 10 days and 11 days, respectively. Total doses were calculated by taking the doses occurring in 1 second as a reference. Results: The maximum absorbed doses were found to be 2.334E+03±1.576E+01 Gy for Y-90 and 7.006E+02±6.013E-01 Gy for Ho-166 at the center of tumor imitation. The minimum absorbed doses were found to be 2.133E-03±1.883E-01 Gy for Y-90 and 1.152E-02±1.036E-03 Gy for Ho-166 at the farthest location from source. The mean absorbed doses in tumor imitation were found to be 1.50E+03±1.36E+00 Gy and 4.58E+02±4.75E-01 Gy for Y-90 and Ho-166, respectively. And, the mean absorbed doses in normal parenchymal tissue were found to be2.07E+01±9.58E-02 Gy and 3.79E+00±2.63E-02 Gy for Y-90 and Ho-166, respectively. Conclusion: Based on the results, Ho-166 is a good alternative to Y-90 according to dosimetric evaluation.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3