SAR131675 Receptor Tyrosine Kinase Inhibitor Induces Apoptosis through Bcl-2/Bax/Cyto c Mitochondrial Pathway in Human Umbilical Vein Endothelial Cells

Author:

Babaei Zeinab1ORCID,Panjehpour Mojtaba1ORCID,Parsian Hadi2ORCID,Aghaei Mahmoud1ORCID

Affiliation:

1. Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

2. Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran

Abstract

Background: Tyrosine kinase inhibitors (TKIs) can be used to inhibit cancer cell proliferation by targeting the vascular endothelial growth factor receptor (VEGFR) family. SAR131675 is a highly selective receptor tyrosine kinase inhibitor to VEGFR3 that reveals the inhibitory effect on proliferation in human lymphatic endothelial cells. However, the molecular mechanisms underlying this process are generally unclear. Objective: This study was performed to investigate the possible involvement of the Bcl-2/Bax/Cyto c apoptosis pathway in human umbilical vein endothelial cells (HUVECs). In addition, the role of reactive oxygen species (ROS) and mitochondrial membrane potential was evaluated. Methods: The effect of SAR131675 on HUVEC cell viability was evaluated by MTT assay. The activity of SAR131675 in inducing apoptosis was carried out through the detection of Annexin V-FITC/PI signal by flow cytometry. To determine the mechanisms underlying SAR131675 induced apoptosis, the mitochondrial membrane potential, ROS generation, the activity of caspase-3, and expression of apoptosis-related proteins such as Bcl-2, Bax, and cytochrome c were evaluated in HUVECs. Results: SAR131675 significantly inhibited cell viability and induced apoptosis in HUVECs in a dose-dependent manner. Moreover, SAR131675 induced mitochondrial dysfunction, ROS generation, Bcl-2 down-regulation, Bax up-regulation, cytochrome c release, and caspase-3 activation, which displays features of the mitochondria-dependent apoptosis signaling pathway. Conclusion: Our present data demonstrated that SAR131675-induced cytotoxicity in HUVECs is associated with the mitochondria apoptotic pathway. These results suggest that further studies are required to fully elucidate the role of TKIs in these cellular processes.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3