Potent Anticancer Activities of Beauvericin against KB cells In Vitro by Inhibiting the Expression of ACAT1 and Exploring Binding Affinity

Author:

Zhou Haiming1ORCID,Zhang Jing1ORCID,Chen Xiaoqing1ORCID,Guo Shili1ORCID,Lin Huimei1,Ding Bo1ORCID,Huang Hongbo1ORCID,Tao Yiwen1ORCID

Affiliation:

1. Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China

Abstract

Background and Objective: Beauvericin (BEA), a cyclic hexadepsipeptide mycotoxin, is a potent inhibitor of the acyl-CoA: cholesterol acyltransferase enzyme 1 (ACAT1) which involved in multiple tumor-correlated pathways. However, the binding mechanisms between BEA and ACAT1 were not elucidated. Methods: BEA was purified from a mangrove entophytic Fusarium sp. KL11. Single-crystal X-ray diffraction was used to determine the structure of BEA. Wound healing assays of BEA against KB cell line and MDA-MB-231 cell line were evaluated. Inhibitory potency of BEA against ACAT1 was determined by ELISA assays. Molecular docking was carried out to illuminate the bonding mechanism between BEA and ACAT1. Results: The structure of BEA was confirmed by X-ray diffraction, indicating a monoclinic crystal system with P21 space group (α = 90°, β = 92.2216(9)o, γ= 90o). BEA displayed migration-inhibitory activities against KB cells and MDA-MB-231 cells in vitro. ELISA assays revealed the protein expression level of ACAT1 in KB cells was significantly decreased after BEA treatment (P <0.05). Molecular docking demonstrated that BEA formed hydrogen bond with His425 and pi-pi staking with Tyr429 in ACAT1. Conclusions: BEA sufficiently inhibited the proliferation and migration of KB cells and MDA-MB-231 cells by downregulating ACAT1 expression. In addition, BEA potentially possessed a strong binding affinity with ACAT1. BEA may serve as a potential lead compound for the development of a new ACAT1-targeted anticancer drug.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3