A Comparison of the Anti-Cancer Effects of Free and PLGA-PAA Encapsulated Hydroxytyrosol on the HT-29 Colorectal Cancer Cell Line

Author:

Sani Nasrin S.1,Onsori Habib2ORCID,Akrami Somayeh3,Rahmati Mohammad4

Affiliation:

1. Department of Genetic, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2. Department of Cell and Molecular Biology, Marand Branch, Islamic Azad University, Marand, Iran

3. Department of Biology, Marand Branch, Islamic Azad University, Marand, Iran

4. Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Background: Hydroxytyrosol is one of the phenolic compounds of olive oil and can induce anticancer effects on colorectal cancer cells. Objective: The aim of the present study was to evaluate the free hydroxytyrosol and nano-capsulated hydroxytyrosol effects on the cell cycle arrest in HT-29 colorectal cancer cell line. Methods: The nano-capsulated hydroxytyrosol was synthesized in poly lactide-co-glycolide-co-polyacrylic acid (PLGA-PAA) copolymer. MTT assay was performed to evaluate the anti-proliferative and anti-tumor effects of the free hydroxytyrosol and nano-capsulated hydroxytyrosol. Finally, the relative expression of CDKN1A, CDKN1B, and CCND1 genes was evaluated in control and treated colorectal cancer cells by using Real-Time PCR. Results: The obtained results from the MTT assay showed that the cytotoxic effects of the nano-capsulated hydroxytyrosol on the colorectal cancer cell line (IC50= 6PPM) were significantly more than free hydroxytyrosol (IC50= 12PPM) after 72h. Also, nano-capsulated hydroxytyrosol showed more significant effects on the upregulation of CDKN1A and CDKN1B genes and down-regulation of the CCND1 gene in colorectal cancer cells. Conclusion: In conclusion, the present study showed that hydroxytyrosol led to the death of colorectal cancer cells through cell cycle arrest. Also, the PLGA-PAA copolymer dramatically caused to increase the cytotoxic effects of the hydroxytyrosol on the colorectal cancer cells.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3