Nitric Oxide Synthase Potentiates the Resistance of Cancer Cell Lines to Anticancer Chemotherapeutics

Author:

Barnawi Ibrahim1,Hawsawi Yousef2,Dash Philip3,Oyouni Atif Abdulwahab A.4,Mustafa Syed Khalid4,Hussien Nahed A5,Al-Amer Osama6,Alomar Suliman7,Mansour Lamjed7ORCID

Affiliation:

1. Department of Biology, Faculty of Sciences, University of Taiba, Madina, Saudi Arabia

2. Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21499, P.O. Box 40047, Saudi Arabia

3. University of Reading Faculty of Life Sciences, school of science, Reading, Reading, United Kingdom

4. Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia

5. Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt

6. Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia

7. Doping Research Chair, Department of Zoology, College of Science, King Saud University PO. Box: 2455, Riyadh, 11451, Saudi Arabia

Abstract

Background: Despite the advancement in the fields of medical science and molecular biology, cancer is still the leading cause of death worldwide. Chemotherapy is a choice for treatment; however, the acquisition of chemo-resistance is a major impediment to cancer management. Many mechanisms have been postulated regarding the acquisition of chemo-resistance in breast cancer the impact on cellular signaling and the induction of apoptosis in tumour cells. The mechanism of the apoptotic mutation of p53 and bcl-2 proteins is commonly associated with increased resistance to apoptosis and, therein, to chemotherapy. Objectives: The current study was aimed to investigate A172 and MDA-MB-231 cancer cells’ sensitivity against chemotherapeutic drugs, including cisplatin, doxorubicin, and paclitaxel with different doses. Moreover, it estimates the resistance of cancer cells by evaluating nitric oxide synthase (NOS) expression and evaluate its correlation with the expression profile proteins of the apoptosis regulating Bcl-2 family. Methods: Dose-dependent sensitivity to cisplatin, doxorubicin, or paclitaxel was evaluated on spheroid cultured A172 and MDA-MB-231 cells lines as measured by time-lapse microscopy over a 72h period. Expressions of two nitric oxides (NO) synthases isoforms (iNOS, eNOS), anti-apoptotic (Bcl-2, phospho-Bcl-2, Mcl-1, and Bcl-xL), and pro-apoptotic (BID, Bim, Bok, Bad, Puma, and Bax) were evaluated by Western blot. The effect of NO modulation on anti- and pro-apoptotic molecule expression was also studied using Western blot. Result: A172 cells show more resistance to chemotherapy drugs than MDA-MB-231 cancer cells. Therefore, they need higher doses for apoptosis. Resistance of gliomas might be returned to the higher significant expression of endothelial eNOS expression. It was clear that there is not a significant effect of NO modulation on the expression of pro-and anti-apoptotic proteins on both cell lines. Conclusion: The present work provides a putative mechanism for the acquisition of drug resistance in breast cancer and glioma, which might be significant for clinical outcomes.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3