HOXA4-Dependent Transcriptional Activation of AXL Promotes Cisplatin- Resistance in Lung Adenocarcinoma Cells

Author:

Yu Shuo1,Ren Hui1,Li Yang1,Liang Xuan2,Ning Qian1,Chen Xue1,Chen Mingwei1,Hu Tinghua1

Affiliation:

1. The First Affiliated Hospital of Xi'an Jiaotong University-Department of Respiratory and Critical Care Medicine Xi'an, Shaanxi, China

2. The First Affiliated Hospital of Xi'an Jiaotong University-Department of Oncology Xi'an, Shannxi, China

Abstract

Background: Lung cancer is one of the most leading causes of cancer-related deaths in adults worldwide. Non-Small Cell Lung Cancer (NSCLC), which comprises 80 to 85% of all lung cancers, is the most lethal subtype of lung cancer with a 5-year survival of less than 13%. In this study, we identified a poorly-studied kinase PDK4 as the most up-regulated kinase encoding gene in Cisplatin resistant lung adenocarcinoma. Methods: In vitro cell viability assay and in vivo tumor xenograft assay were used in the detection of cell proliferation. RNA isolation, quantitative Real-Time PCR, Western blot analysis, immunohistochemistry were used to investigate the expression of RNA and protein. Lentivirus infection was used to regulate gene expression. Luciferase assays were used to monitor EPAS1 promoter activity. Results: In vivo PDK4 expression was elevated in a Cisplatin-resistant population of lung adenocarcinoma cells, PDK4-dependent Cisplatin-resistance promotes tumor growth of lung adenocarcinoma in vivo and in vitro, clinically PDK4 expression was associated with poor prognosis in lung adenocarcinoma patients, mechanically PDK4 promoted cell growth and Cisplatin-resistance of lung adenocarcinoma via transcriptional regulation of endothelial PAS domain-containing protein 1 (EPAS1). Conclusion: PDK4 is the most up-regulated kinase encoding gene in Cisplatin resistant lung adenocarcinoma and PDK4-dependent Cisplatin-resistance promotes tumor growth of lung adenocarcinoma mainly through transcriptional regulation of EPAS1. Enriched PDK4 expression was correlated with the poor prognosis of lung cancer patients, indicating that PDK4 could be a potential therapeutic target for Cisplatin-resistant lung adenocarcinoma.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3