Hydrophobic and Hydrophilic Film-Forming Gels for the Controlled Delivery of Drugs with Different Levels of Hydrophobicity

Author:

Nguyen Khanh T.1,Tran Phuong H.L.2,Ngo Hai V.3,Tran Thao T.D.4ORCID

Affiliation:

1. University of Alabama at Birmingham, Birmingham, AL, United States

2. Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia

3. College of Pharmacy, Ajou University, Suwon, Korea

4. Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

Background: This study aimed to evaluate the effects of hydrophobic and hydrophilic Film-Forming Gels (FFGs) on the controlled delivery of drugs with different levels of hydrophobicity. Methods: This evaluation was carried out by employing zein and polyvinylpyrrolidone as hydrophobic and hydrophilic film-forming agents, respectively, in combination with hydroxypropyl methylcellulose functionalized as a hydrogel basement at a ratio that had been optimized to achieve the fastest drying time. Free curcumin or terbinafine hydrochloride was subsequently dispersed into blank FFGs to produce the final FFG formulations. Results: Although the extreme hydrophobicity of curcumin strongly limited its topical permeability compared to that of terbinafine hydrochloride, zein FFGs clearly resulted in a favourable sustained release system for highly hydrophobic drugs, such as curcumin. Moreover, polyvinylpyrrolidone would be highly effective for the sustained release of a less hydrophobic drug, such as terbinafine hydrochloride. Analyses of the wettability, surface morphology, chemical interactions and crystallinity of FFGs also helped to elucidate the mechanisms of their drug release profiles. Conclusion: This fundamental finding is beneficial for further design studies on FFGs as sustained drug delivery systems for topical drugs with a wide range of hydrophobicities.

Funder

Australian Research Council's Discovery Early Career Researcher Award

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3