Study of the Parameters Affecting the Loading of Fluorescein on Coated Gold Nanoparticles: Promising Nanostructure for Cancer Diagnosis

Author:

Hendi Nazanin1,Shakeri-Zadeh Ali2,Attaran Neda3ORCID,Alamzadeh Zahra2,Asefnejad Azadeh1

Affiliation:

1. Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran

3. Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Background: Recent advances in nanotechnology have led to the use of nanomaterials in the diagnosis of cancer by imaging techniques. Objective: This study aimed to synthesize fluorescein-conjugated gold nanoparticles and study the parameters affecting the loading of fluorescein on synthesized coated gold nanoparticles with the ability to be used in medical diagnostic methods. Methods: The synthesized gold nanoparticles were functionalized with polyethylene glycol. Then, these particles were conjugated with fluorescein under different conditions. To investigate the optical and structural features as well as the factors affecting the loading, the nanoparticles were evaluated by ultraviolet-visible, fluorescence and FT-IR spectrophotometer, fluorescence spectrophotometer, transmission electron microscopy, dynamic light scattering, and zeta potential measuring device. Also, the use of these particles in cancer diagnosis on the skin melanoma cell (B16F10) was examined using a fluorescence microscope. Results: PEG-coated spherical gold nanoparticles were synthesized as a carrier for the fluorescein dye detector. The coating agent concentration, incubation time, temperature, and pH of the medium affected the loading efficiency of fluorescein on the nanoparticles. Also, optimal conditions for use in the diagnostic applications were investigated. Ten micromolar of the sample were selected for cell imaging studies. The fluorescence signal of B16F10 cells containing nanoparticles was relatively strong, indicating the amount of nanoparticles uptaken by the cells. Conclusion: The results showed that by designing fluorescent gold nanoparticles with fluorescein as fluorescent detectors and considering their diagnostic importance, an efficient way to diagnose incurable diseases can be found.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3