Molecular Chaperone HSP70 and Key Regulators of Apoptosis - A Review

Author:

Roufayel Rabih1,Kadry Seifedine2

Affiliation:

1. Department of Science, College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait

2. Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University, Beirut, Lebanon

Abstract

Identified as a molecular chaperone constitutively being synthesized due to enhanced elevated temperature change, this heat shock protein HSP70 has shown to be intimately involved in many protein biogenesis, facilitating the synthesis and folding of proteins and trafficking of nascent peptides during cell growth. HSP70 also plays a vital role in protein assembly, regulation and interaction with a wide variety of proteins. Stress-induced cell death is under the control of the Bcl-2 family of apoptotic regulators and display either pro-apoptotic or anti-apoptotic activities. Subjected to stress conditions such as heat shock, cells have been reported to express elevated expressions of HSP70. Moreover, this molecular chaperon has shown to act at multiple levels to suppress stressed-induced apoptotic signals of some Bcl-2 members by repairing, re-synthesizing damaged proteins, and stabilizing unfolded proteins. Therefore, HSP70 synthesis can act as an essential recovery mode for cellular survival and adaptation during lethal conditions.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3