CoCl2-mimicked hypoxia induces the assembly of stress granules in trophoblast cells via eIF2α phosphorylation-dependent and -independent pathways

Author:

Ma Chunling1ORCID,Lv Qiulan1ORCID,Ma Liang2ORCID,Xing Baoxiang1ORCID,Li Yan1ORCID,Li Zhiyuan3ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China

2. Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China

3. Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China

Abstract

Introduction: Hypoxia has been implicated in preeclampsia (PE) pathophysiology. Stress granules (SGs) are present in the placenta of patients with PE. However, the pathways that contribute to SG aggregation in PE remain poorly understood. Objective: The objective of the current study is to investigate this issue. We first established an in vitro hypoxia model using human trophoblast cell line HTR-8/SVneo treated with cobalt chloride (CoCl2). Methods: CCK8 assay and wound healing assay were conducted to assess the viability and migration of HTR-8/SVneo cells after exposure to CoCl2-mimicked hypoxia. SG component expression in HTR-8/SVneo cells treated with CoCl2 alone, or in combination with indicated siRNAs was evaluated by reverse transcription quantitative PCR (RT-qPCR), western blot and immunofluorescence staining. Results: Our results found CoCl2-mimicked hypoxia inhibits the proliferation and migration of HTR-8/SVneo cells. The treatment of CoCl2 can induce SG assembly in HTR-8/Svneo cells. Conclusion: Mechanistically, both heme-regulated inhibitors (HRI) mediated eukaryotic translation initiation factor (eIF)2α phosphorylation pathway and 4E binding protein 1 (4EBP1) pathway are involved in SG formation under the stress of CoCl2-mimicked hypoxia. Hypoxia-induced SGs in trophoblast cells might contribute to the etiology of PE.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3