Mechanism of IRF5-regulated CXCL13/CXCR5 Signaling Axis in CCI-induced Neuropathic Pain in Rats

Author:

Li Qiongcan1,Cao Jiawei1,Hu Chungu1,Ding Zhuofeng2,Chen Juan1,Liu Songhua1

Affiliation:

1. Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, Hunan, 410028, China.

2. Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Abstract

Background: Neuropathic pain is chronic and affects the patient’s life. Studies have shown that IRF5 and CXCL13/CXCR5 are involved in neuropathic pain; however, their interactions are unknown. Objective: In this study, a rat neuropathic pain model was constructed by inducing chronic compression injury (CCI). IRF5 recombinant lentiviral vector and CXCL13 neutralizing antibody were administered to investigate their action mechanisms in neuropathic pain. Consequently, the new strategies for disease treatment could be evolved. Methods: The CCI rats were intrathecally injected with recombinant lentivirus plasmid LV-IRF5 (overexpression), LV-SH-IRF5 (silencing), and CXCL13 neutralizing antibody. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured. The tumor necrosis factor (TNF)-alpha, interleukin (IL)-1β, and IL-6 levels were recorded via the enzyme-linked immunosorbent assay (ELISA). The spinal cord was stained using hematoxylin–eosin (HE). The binding of IRF5 to CXCL13 was analyzed by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assay. The IRF5, neuronal nuclei (NeuN), CXCL13, and CXCR5 expressions were detected through quantitative real-time polymerase chain reaction and Western blot. Results: The MWT and TWL values in the CCI group were lower than in the Sham group. The expressions of CXCL13, CXCR5, and IRF5 in CCI rats were gradually increased with the modeling time. IRF5 silencing suppressed the expression of NeuN and lumbar enlargement in CCI rats and promoted MWT and TWL. Moreover, IRF5 silencing inhibited the expressions of CXCR5 and CXCL13 genes and down-regulated the expression levels of inflammatory factors. IRF5 was directly and specifically bound with the endogenous CXCL13 promoter and thus regulated it. IRF5 overexpression exacerbated the disease phenotype of CCI-induced neuropathic pain in rats. Administration of CXCL13 neutralizing antibodies reversed the IRF5 overexpression effects. Conclusion: The IRF5 silencing alleviated neuropathic pain in CCI rats by downregulating the pain threshold, inflammatory cytokine levels, and CXCL13/CXCR5 signaling. IRF5 overexpression exacerbated the disease parameters of CCI-induced neuropathic pain in rats; however, they were reversed by neutralizing antibodies against CXCL13.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3