Affiliation:
1. Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, Hunan, 410028, China.
2. Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Abstract
Background:
Neuropathic pain is chronic and affects the patient’s life. Studies have shown that IRF5 and CXCL13/CXCR5 are involved in neuropathic pain; however, their interactions are unknown.
Objective:
In this study, a rat neuropathic pain model was constructed by inducing chronic compression injury (CCI). IRF5 recombinant lentiviral vector and CXCL13 neutralizing antibody were administered to investigate their action mechanisms in neuropathic pain. Consequently, the new strategies for disease treatment could be evolved.
Methods:
The CCI rats were intrathecally injected with recombinant lentivirus plasmid LV-IRF5 (overexpression), LV-SH-IRF5 (silencing), and CXCL13 neutralizing antibody. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured. The tumor necrosis factor (TNF)-alpha, interleukin (IL)-1β, and IL-6 levels were recorded via the enzyme-linked immunosorbent assay (ELISA). The spinal cord was stained using hematoxylin–eosin (HE). The binding of IRF5 to CXCL13 was analyzed by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assay. The IRF5, neuronal nuclei (NeuN), CXCL13, and CXCR5 expressions were detected through quantitative real-time polymerase chain reaction and Western blot.
Results:
The MWT and TWL values in the CCI group were lower than in the Sham group. The expressions of CXCL13, CXCR5, and IRF5 in CCI rats were gradually increased with the modeling time. IRF5 silencing suppressed the expression of NeuN and lumbar enlargement in CCI rats and promoted MWT and TWL. Moreover, IRF5 silencing inhibited the expressions of CXCR5 and CXCL13 genes and down-regulated the expression levels of inflammatory factors. IRF5 was directly and specifically bound with the endogenous CXCL13 promoter and thus regulated it. IRF5 overexpression exacerbated the disease phenotype of CCI-induced neuropathic pain in rats. Administration of CXCL13 neutralizing antibodies reversed the IRF5 overexpression effects.
Conclusion:
The IRF5 silencing alleviated neuropathic pain in CCI rats by downregulating the pain threshold, inflammatory cytokine levels, and CXCL13/CXCR5 signaling. IRF5 overexpression exacerbated the disease parameters of CCI-induced neuropathic pain in rats; however, they were reversed by neutralizing antibodies against CXCL13.
Publisher
Bentham Science Publishers Ltd.
Subject
Molecular Biology,Molecular Medicine,General Medicine,Biochemistry