ABCG1 is Expressed in a LXR-Independent Manner in Patients with Type 2 Diabetes Mellitus

Author:

Wang Hui-Juan1,Wang Ji-Hong1,Xu Xin-Na1,Zhao Xing-Shan1,Liu Wei1

Affiliation:

1. Department of Cardiology, Beijing Jishuitan Hospital, Beijing 100035, China

Abstract

Background:: Patients with type 2 diabetes mellitus have a high cardiovascular risk due, in part, to abnormalities of high-density lipoprotein mediated cholesterol efflux. The ATP-binding cassette A1 and G1 play pivotal role in regulation of cholesterol efflux. However, the regulation of these transporters in type 2 diabetes mellitus remain obscure. Objectives:: This study aimed to investigate the expression of ATP-binding cassette A1 and G1 and their regulation by Liver X receptors in monocyte-derived macrophages in type 2 diabetes mellitus, and to determine whether the alteration of these transporters might affect cholesterol efflux from macrophages. Methods:: Blood was collected from type 2 diabetic patients and healthy controls. Peripheral monocytes were differentiated to macrophages. Quantitative real-time PCR, western blots, and cholesterol efflux assays were performed. The Liver X receptor and Liver X receptor element complex in the ATP-binding cassette G1 gene promoter was detected by electrophoretic mobility supershift assay. Results:: Macrophage ATP-binding cassette G1 expression and high density lipoprotein-induced cholesterol efflux were significantly reduced in type 2 diabetic patients. However, the mRNA expression of ATP-binding cassette G1 in type 2 diabetic patients was not inhibited by Liver X receptor siRNA and the Liver X receptor- Liver X receptor element complexes remain unchanged similarly. Conclusion:: The study suggested that the expression of ATP-binding cassette G1 and high density lipoprotein-induced cholesterol efflux in macrophages were reduced in type 2 diabetes mellitus. Impairment of cholesterol efflux and ATP-binding cassette G1 gene expression in type 2 diabetes mellitus might be regulated by a Liver X receptor-independent pathway.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3