Biological Evaluation and Reverse Pharmacophore Mapping of Innovative Bis-Triazoles as Promising Anticancer Agents

Author:

Saleh Maysaa M.,Abuirmeileh Amjad N.,Al-Rousan Rabaa M.,Abudoleh Suha M.,Hassouneh Loay K.,Zihlif Malek A.,Taha Mutasem O.,Abutayeh Reem F.,Mansour Hebah,Abu-Irmaileh Bashaer

Abstract

Here, we describe further cytotoxic studies and reverse pharmacophore mapping (pharmacophore profiling) for bis-triazoles MS44-53, which were designed and synthesized previously to stabilize the G-quadruplex nucleic acids capable of being formed at the telomeric region and promoter sequences of genes involved in cellular proliferation and oncogenes. Pharmacophore-based activity profiling screen demonstrated some biological targets that MS44-53 may modulate their biological response, and thus can be considered as potential drugs to treat different kinds of diseases, such as carcinoma, diabetes type II, bacterial infection and cardiovascular diseases. Potent cell growth inhibitory properties were shown by ligands MS47 and MS49 against human melanoma MDA-MB-435, colon cancer HCT-116 and COLO 205, and pancreatic cancer MIA PaCa-2 cell lines, as evidenced by MTT assay. Both ligands were more potent against cancer cells than in skin normal CCD-1064Sk fibroblasts. Aim: The aim of this study is to identify the molecular target and mechanism of action of our promising anticancer bis-triazoles MS44-53, focusing specifically on the G-quadruplex stabilizers MS47 and MS49. Background: In molecular biology, G-quadruplexes (also known as G4-DNA), one of the higher-order structures of polynucleotides, are four stranded structures formed by nucleic acid sequences which are rich in guanine. They are formed mainly at the single-stranded G-overhang of telomeric DNA and within promoter sequences of genes involved in cellular proliferation and oncogenes such as c-myc, c-kit, and Hsp90. Stabilization of DNA G-quadruplexes is one of the anticancer strategies that has the potential to treat all cancers regardless of the type. A new series of bis-triazoles MS44-53 were developed to stabilize G-quadruplex structures selectively, as G4 ligands and experimental antitumour agents. FRET assay showed that MS47 and MS49 were only the best binders towards the Hsp90 promoter G-guadruplexes. While all bis-triazoles MS44-53 exhibited potent cell growth inhibitory activity against human carcinoma cell lines, suggesting that the ligands perturb molecular targets and mechanisms of action, other than stabilizing G-quadruplexes, contributing to antitumor activity. Therefore, the molecular targets and mechanisms of action of bis-triazoles MS44-53 in different types of human cancer cell lines should be determined by performing further computational studies to MS44-53 and in vitro evaluations for the G-quadruplex stabilizers MS47 and MS49. Objectives: 1- Determining the exact IC50 for bis-triazoles MS47 & MS49 against four different types of human cancer cell lines; melanoma MDA-MB-435, pancreatic cancer MIA PaCa-2, and colon cancer HCT-116 and COLO 205 cell lines. 2- Predicting the biological targets that bis-triazoles MS44-53 may interact with to trigger or block their biological response. Methods: 1- MTT assay was used for in vitro evaluation of the antiproliferative activities of MS47 and MS49, and determination of IC50 values. 2- Reverse pharmacophore mapping (pharmacophore profiling) was used for predicting the biological targets of bis-triazoles MS44-53, and determining the % binding probabilities. Results: MS49 exhibited more potent proliferation inhibitory activity than MS47 and higher IC50 value against skin normal fibroblasts. Pharmacophore profiling demonstrated FGFR1, PDGFR2, FLT3, mTOR, PPAR-gamma, MUR-F and CETP as biological targets for bis-triazoles MS44-53. Conclusion: Bis-triazoles MS47 and MS49 are promising selective innovative compounds with wide spectrum cytotoxic activities against distinct cancer types. Bis-triazoles MS44-53 can be considered as potential drugs to treat different types of carcinoma, in addition to diabetes type II, bacterial infection and cardiovascular diseases. Other: Further in vitro evaluations will be performed for bis-triazoles MS44-53 in order to identify their molecular targets and mechanisms of action in different types of human cancer cell lines.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3