Bio-mimicking Shear Stress Environments for Enhancing Mesenchymal Stem Cell Differentiation

Author:

Arora Seep1ORCID,Srinivasan Akshaya1ORCID,Leung Chak Ming1,Toh Yi-Chin1ORCID

Affiliation:

1. Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore

Abstract

Mesenchymal stem cells (MSCs) are multipotent stromal cells, with the ability to differentiate into mesodermal (e.g., adipocyte, chondrocyte, hematopoietic, myocyte, osteoblast), ectodermal (e.g., epithelial, neural) and endodermal (e.g., hepatocyte, islet cell) lineages based on the type of induction cues provided. As compared to embryonic stem cells, MSCs hold a multitude of advantages from a clinical translation perspective, including ease of isolation, low immunogenicity and limited ethical concerns. Therefore, MSCs are a promising stem cell source for different regenerative medicine applications. The in vitro differentiation of MSCs into different lineages relies on effective mimicking of the in vivo milieu, including both biochemical and mechanical stimuli. As compared to other biophysical cues, such as substrate stiffness and topography, the role of fluid shear stress (SS) in regulating MSC differentiation has been investigated to a lesser extent although the role of interstitial fluid and vascular flow in regulating the normal physiology of bone, muscle and cardiovascular tissues is well-known. This review aims to summarise the current state-of-the-art regarding the role of SS in the differentiation of MSCs into osteogenic, cardiovascular, chondrogenic, adipogenic and neurogenic lineages. We will also highlight and discuss the potential of employing SS to augment the differentiation of MSCs to other lineages, where SS is known to play a role physiologically but has not yet been successfully harnessed for in vitro differentiation, including liver, kidney and corneal tissue lineage cells. The incorporation of SS, in combination with biochemical and biophysical cues during MSC differentiation, may provide a promising avenue to improve the functionality of the differentiated cells by more closely mimicking the in vivo milieu.

Funder

SMART Innovation Grant

National University of Singapore

Singapore Ministry of Education

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3