Targeted Drug Delivery to Cancer Stem Cells through Nanotechnological Approaches

Author:

Sun Wenjiao1ORCID,Chen Guoliang1ORCID,Du Fangyu1ORCID,Li Xiaohu1ORCID

Affiliation:

1. Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China

Abstract

Cancer Stem Cells (CSCs) are responsible for tumor development, invasion and metastasis and resistance to chemotherapy and radiotherapy. Therefore, treatment strategies have turned to targeting CSCs, and utilizing nanotechnological approaches to target CSCs has become increasingly fascinating. Functionalized nanoparticles (NPs), such as metallic NPs, liposomes, polymeric NPs, albumin microspheres and nanomicelles, can easily cross the cytoplasmic membrane and accumulate at their targets to continuously release therapeutic agents in response to the characteristics of the tumor microenvironment. Different kinds of NPs possess different characteristics. Inducing immune responses might be the disadvantage they commonly owned through the summary and analysis of these NPs. For natural polymers, they have many attractive properties, but deficiencies also exist such as poor water-solubility, high viscosity, high permeability, etc. The drug-encapsulated NPs launched in the market and those in the clinical trials exhibit a bright prospect in cancer targeted therapy. In addition, the application of nanodiagnostic techniques, such as nanocantilever and DNA microarray technology and early cancer detection has become an indispensable component in clinical practice to improve in vivo detection and enhance targeting efficiency. This review mainly determines the species and usages of NPs in drug delivery and disease diagnosis, the delivery mechanisms of NPs, the main factors that affect nanomedicine efficiency and toxicity and the further trends in the development of targeted therapy. Nevertheless, more and deeper investigations are still needed to avert potential adverse effects and improve the delivery efficiency to achieve better therapeutic effects.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3