Pseudomonas aeruginosa Invades Human Aortic Endothelial Cells and Induces Cell Damage in vitro

Author:

Mittal Rahul1,Jhaveri Vasanti M.1,Kay Sae-In Samantha2,Blackwelder Patricia3,Patel Kunal1

Affiliation:

1. Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, FL-33136, United States

2. Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, FL-33136, United States

3. Center for Advanced Microscopy, University of Miami, Coral Gables, Florida, FT, United States

Abstract

Background:Cardiovascular diseases such as endocarditis are the second most common cause of death worldwide. Infective Endocarditis (IE) is the most severe infection of the heart associated with significant mortality and morbidity. The binding and invasion of Human Aortic Endothelial Cells (HAECs) by pathogenic microbes can play an important role in the pathogenesis of IE.Objective:Pseudomonas aeruginosa is an emerging pathogen that has been associated with IE. However, it is not known whether P. aeruginosa can bind and interact with HAECs. The aim of this study was to determine whether P. aeruginosa can bind and colonize HAECs.Methods:The invasion of HAECs by P. aeruginosa was assessed by gentamicin protection assay. Cytokine levels were determined by enzyme-linked Immunosorbent Assay (ELISA) kits. Cell damage was determined by Lactate Dehydrogenase (LDH) assay.Results:P. aeruginosa can bind and invade HAECs. Infection of HAECs with P. aeruginosa induces TNF-α IL-1β, IL-6 and IL-8 cytokine production leading to the generation of inflammatory milieu that can cause tissue damage as observed in human clinical cases of IE. We also observed that P. aeruginosa induces cell damage in HAECs.Conclusion:In this study, we demonstrate for first time that P. aeruginosa can invade and survive inside HAECs. This cell culture model can be of immense importance to determine the efficacy of drug targets against IE.

Publisher

Bentham Science Publishers Ltd.

Subject

Cardiology and Cardiovascular Medicine,Pharmacology,Hematology,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3