Biomass Conversion to Fuels and Value-Added Chemicals: A Comprehensive Review of the Thermochemical Processes

Author:

Muh Erasmus1,Tabet Fouzi2,Amara Sofiane3

Affiliation:

1. Institute of Water and Energy Sciences (including Climate Change), Pan African University, BP 119 Tlemcen 13000, Algeria

2. DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, D-04347 Leipzig, Germany

3. Unite de Recherche Materiaux et Energies Renouvelables (URMER), University of Tlemcen, BP119 Tlemcen 13000, Algeria

Abstract

Fossil fuels have fueled the world economy for decades. However, given their limited nature, fluctuating prices and the escalating environmental concerns, there is an urgent need to develop and valorize cheaper, cleaner and sustainable alternative energy sources to curb these challenges. Biomass represents a valid alternative to fossil fuels, especially for fuel and chemical production as it represents the only natural organic renewable resource with vast abundance. A vast array of conversion technologies is used to process biomass from one form to another, to release energy, high-value products or chemical intermediates. This paper extensively reviews the thermochemical processing of biomass to fuels and high-value chemicals, with an emphasis on the process performance, conditions, and weaknesses. Technologies with great future prospects as well as those with possible linkage to CO<sub>2</sub> capture and sequestration are highlighted. The important chemical compositions of biomass feedstock, their conversion technologies and most importantly, the role of catalysis in their conversion to fuels, fuel additives, based chemicals, and added-value chemicals are also discussed. Special attention is given to biofuel production for transportation as this sector is responsible for the highest global greenhouse gas emissions, and has an emerging market with promising future prospects for sustainable large-scale biomass processing. The processes involved in the purification and upgrading of biomass-derived products into higher-value products are equally discussed and reviewed.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3