Anti-Inflammatory Drug Effects on Apoptosis of Eosinophil Granulocytes Derived from Murine Bone-Marrow: Cellular Mechanisms as Related to Lineage, Developmental Stage and Hemopoietic Environment

Author:

Elsas Maria I. C. G.,Elsas P. X.1

Affiliation:

1. Dept. of Pediatrics, Instituto Fernandes Figueira, FIOCRUZ, Brazil., Brazil

Abstract

The effects of a variety of widely used anti-inflammatory agents (dexamethasone, indomethacin, and montelukast) as well as ubiquitous mediators of inflammation (prostaglandin E2 and nitric oxide) on the development of murine eosinophils ex vivo and in vivo have been studied over the last decade. The results indicate that developing eosinophils differ markedly in their responses to these agents from the mature forms of the same lineage, studied either in allergic human subjects or experimental animal models of allergic disease. Most strikingly, glucocorticoids strongly enhance eosinophil development, both in vitro and in vivo. The enhancing effects are also observed during stress reactions and are strictly dependent on stress-induced glucocorticoid hormone production from the adrenal glands. Some, but not all, of the developmental effects of glucocorticoids on eosinophils could be accounted for their ability to prevent generation of nitric oxide through inducible NO synthase, which leads to apoptosis through the CD95-CD95L pathway. A novel mechanism for the effects of indomethacin in upregulating the development of eosinophils has also been documented. Evidence that lineage-specific as well as stage-specific cellular response programmes determine these different outcomes is discussed, along with the perspectives for future research.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,General Medicine,Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3