Experimental and Comparison Based Study on Diabetes Prediction Using Artificial Neural Network

Author:

Pradhan Nitesh1ORCID,Dhaka Vijaypal S.1ORCID,Kulhari Satish C.2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Manipal University Jaipur, Rajasthan, India

2. Department of Computer Science and Engineering, Presidencey University, Banglore, India

Abstract

Background: Diabetes is spreading in the entire world. In a survey, it is observed that every generation from child to old age people are suffering from diabetes. If diabetes is not identified in time, it may lead to deadliest disease. Prediction of diabetes is of the utmost challenging task by machines. In the human body, diabetes is one of the perilous maladies that creates depended disease such as kidney disease, heart attack, blindness etc. Thus it is very important to diagnose diabetes in time. Objective: Our target is to develop a system using Artificial Neural Network (ANN), with the ability to predict whether a patient suffers from diabetes or not. Methods: This paper illustrates various machine learning techniques in form of literature review; such as Support Vector Machine, Naïve Bayes, K Nearest Neighbor, Decision Tree, Random Forest, etc. We applied ANN to predict diabetes. In this paper, the architecture of ANN consists of four hidden layers each of six neurons and one output layer with one neuron. Optimizer used for the architecture is ‘Adam’. Results: We have Pima Indian diabetes dataset of sufficient number of patients with nine different symptoms with respect to the patients and nine different features in connection with the mathematical computation/prediction. Hence we bifurcate the dataset into training and testing set in majority and minority ratio of 80:20 respectively. It facilitates us the majority patient’s data to be used as training set and minority data to be used as testing set. We train our network for multiple epoch with different activation function. We used four hidden layers with six neurons in each hidden layer and one output layer. On the hidden layer, we used multiple activation functions such as sigmoid, ReLU etc. and obtained beat accuracy (88.71%) in 600 epochs with ReLU activation function. On the output layer, we used only sigmoid activation function because we have only two classes in our dataset. Conclusion: Diabetes prediction by machine is a challenging task. So many machine learning algorithms exist to predict the diabetes such as Naïve Bayes, decision tree, K nearest neighbor, support vector machine etc. This paper presents a novel approach to predict whether a patient has diabetes or not based on Pima Indian diabetes dataset. In this paper, we used artificial neural network to train out network and it is observed that artificial neural network approach performs better than all other classifiers.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3