IP Traceback using Flow Based Classification

Author:

Bhavani Yerram1,Janaki Vinjamuri2,Sridevi Rangu3

Affiliation:

1. Department of Information Technology, Kakatiya Institute of Technology & Science, Warangal, India

2. Department of Computer Science and Engineering, Vaagdevi College of Engineering, Warangal, India

3. Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Hyderabad, India

Abstract

Background:Distributed Denial of Service (DDoS) attack is a major threat over the internet. The IP traceback mechanism defends against DDoS attacks by tracing the path traversed by attack packets. The existing traceback techniques proposed till now are found with few short comings. The victim required many number of packets to trace the attack path. The requirement of a large number of packets resulted in more number of combinations and more false positives.Methods:To generate a unique value for the IP address of the routers in the attack path Chinese Remainder theorem is applied. This helped in combining the exact parts of the IP address at the victim. We also applied K-Nearest Neighbor (KNN) algorithm to classify the packets depending on their traffic flow, this reduced the number of packets to reconstruct the attack path.Results:The proposed approach is compared with the existing approaches and the results demonstrated that the attack graph is effectively constructed with higher precision and lower combination overhead under large scale DDoS attacks. In this approach, packets from diverse flows are separated as per flow information by applying KNN algorithm. Hence, the reconstruction procedure could be applied on each group separately to construct the multiple attack paths. This results in reconstruction of the complete attack graph with fewer combinations and false positive rate.Conclusion:In case of DDoS attacks the reconstruction of the attack path plays a major role in revealing IP addresses of the participated routers without false positives and false negatives. Our algorithm FRS enhances the feasibility of information pertaining to even the farthest routers by incorporating a flag condition while marking the packets. The rate of false positives and false negatives are drastically reduced by the application of Chinese Remainder Theorem on the IP addresses of the router. At the victim, the application of KNN algorithm reduced the combination overhead and the computation cost enormously.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3