Real-Time Detection of Road Lane-Lines for Autonomous Driving

Author:

Farag Wael1

Affiliation:

1. College of Engineering and Technology, American University of the Middle East, Kuwait; Electrical Power Eng., Cairo University, Cairo, Egypt

Abstract

Background: Enabling fast and reliable lane-lines detection and tracking for advanced driving assistance systems and self-driving cars. Methods: The proposed technique is mainly a pipeline of computer vision algorithms that augment each other and take in raw RGB images to produce the required lane-line segments that represent the boundary of the road for the car. The main emphasis of the proposed technique in on simplicity and fast computation capability so that it can be embedded in affordable CPUs that are employed by ADAS systems. Results: Each used algorithm is described in details, implemented and its performance is evaluated using actual road images and videos captured by the front mounted camera of the car. The whole pipeline performance is also tested and evaluated on real videos. Conclusion: The evaluation of the proposed technique shows that it reliably detects and tracks road boundaries under various conditions.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced real-time road-vehicles’ detection and tracking for driving assistance;International Journal of Knowledge-based and Intelligent Engineering Systems;2024-05-28

2. Utilizing Probabilistic Maps and Unscented-Kalman-Filtering-Based Sensor Fusion for Real-Time Monte Carlo Localization;World Electric Vehicle Journal;2023-12-21

3. Applications of Image Processing Techniques to Determine the Lane for Autonomous Vehicles;2023 8th International Scientific Conference on Applying New Technology in Green Buildings (ATiGB);2023-11-10

4. Bibliography;Machine Learning for Transportation Research and Applications;2023

5. Transportation data and sensing;Machine Learning for Transportation Research and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3