Big Data Security Challenges and Solution of Distributed Computing in Hadoop Environment: A Security Framework

Author:

Bhathal Gurjit Singh1ORCID,Dhiman Amardeep Singh1

Affiliation:

1. Department of Computer Science and Engineering, Punjabi University, Patiala, Punjab 147002, India

Abstract

Background: In current scenario of internet, large amounts of data are generated and processed. Hadoop framework is widely used to store and process big data in a highly distributed manner. It is argued that Hadoop Framework is not mature enough to deal with the current cyberattacks on the data. Objective: The main objective of the proposed work is to provide a complete security approach comprising of authorisation and authentication for the user and the Hadoop cluster nodes and to secure the data at rest as well as in transit. Methods: The proposed algorithm uses Kerberos network authentication protocol for authorisation and authentication and to validate the users and the cluster nodes. The Ciphertext-Policy Attribute- Based Encryption (CP-ABE) is used for data at rest and data in transit. User encrypts the file with their own set of attributes and stores on Hadoop Distributed File System. Only intended users can decrypt that file with matching parameters. Results: The proposed algorithm was implemented with data sets of different sizes. The data was processed with and without encryption. The results show little difference in processing time. The performance was affected in range of 0.8% to 3.1%, which includes impact of other factors also, like system configuration, the number of parallel jobs running and virtual environment. Conclusion: The solutions available for handling the big data security problems faced in Hadoop framework are inefficient or incomplete. A complete security framework is proposed for Hadoop Environment. The solution is experimentally proven to have little effect on the performance of the system for datasets of different sizes.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Reference23 articles.

1. Technology Solutions FUJITSUF; Fujitsu Munich, Germany2017.

2. Oussous A.; Benjelloun F.Z.; Lahcen A.A.; , J King Saud University-Computer and Information Sciences pp. 1-18, 2017.

3. Bappalige S. P.; An introduction to Apache Hadoop for big data 2014, [Retrieved March 26, 2019, from:

4. Hadoop Common 2019. [Retrieved March 20, 2019, from,

5. Borthakur D.; HDFS Architecture Guide 2018, [Retrieved March 20, 2019, from:

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3